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Received 2013 March 18; accepted 2014 November 8; published 2014 December 22

ABSTRACT

The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI)
has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space
Telescope (JWST)’s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background
than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to
have 90%–95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point
source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes
different optical path delays (pistons) between mask holes and fit the model parameters with image plane data.
It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate
effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on
the standard deviation of closure phase, σCP (a proxy for binary point source contrast). If σCP < 10−4 radians—a
contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could
be imaged with JWST NIRISS. We show the feasibility of using NIRISS’ NRM with the sub-Nyquist sampled
F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the
dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors
and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these
errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for
space-based NRM.

Key words: instrumentation: interferometers – planetary systems – space vehicles: instruments –
techniques: high angular resolution

1. INTRODUCTION

Recent direct detections of exoplanets open a spectroscopic
window into the atmosphere and physics of young and adoles-
cent exoplanets. They are an important component for piecing
together a complete picture of exoplanetary formation and evo-
lution, and are complementary to indirect detections methods.
Young and nearby stars have already been surveyed from a few
Astronomical Units of physical separation outwards with di-
rect imaging and coronagraphs on eight meter class telescopes
(Wahhaj et al. 2013; Nielsen et al. 2013; Biller et al. 2013;
Vigan et al. 2012) and are being surveyed at even higher con-
trast with current (Oppenheimer et al. 2012; Macintosh et al.
2012; Beuzit et al. 2008; Martinache & Guyon 2009) instru-
ment surveys utilizing extreme adaptive optics (ExAO). How-
ever, the close environs of young systems in stellar formation
regions are only accessible to ExAO systems using interferomet-
ric techniques such as non-redundant mask (NRM) interferome-
try (Lacour et al. 2011; Kraus & Ireland 2012; Cieza et al. 2013;
Huélamo et al. 2011). NRM imaging is fundamentally limited
by photon noise, so it yields moderate contrast. By comparison,
coronagraphs (which suppress light from the bright central ob-
ject) are capable of delivering higher contrast than NRM, but
their search area does not reach as close in as that of NRM. The
two techniques are complementary.

NRM was first used to improve the angular resolution of
filled-aperture telescopes (Baldwin et al. 1986; Haniff et al.
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1987; Tuthill et al. 2000). Its improved dynamic range helped
to probe the physics of binaries at moderate contrast ratios
(Lloyd et al. 2006; Ireland et al. 2008; Bernat et al. 2010;
Martinache et al. 2007, 2009). More recently, NRM observations
of star forming regions have discovered structures associated
with the birth of exoplanets (Kraus & Ireland 2012; Cieza
et al. 2013; Huélamo et al. 2011). Routine ground contrast ratio
limits for NRM are 102–103 with the deepest contrast being
ΔL′ = 7.99 (Hinkley et al. 2011). Today instruments combine
NRM with ExAO systems (Sivaramakrishnan et al. 2010b;
Zimmerman 2011; Zimmerman et al. 2012). These facilities,
together with wide bandpass polarization or integral field unit
spectroscopy (IFS) in the YJHK bands on the 8 m Gemini South
telescope (Macintosh et al. 2014) as well as 2.5–5 μm NRM on
the 40K James Webb Space Telescope’s Near Infrared Imager
and Slitless Spectrograph (JWST NIRISS; Doyon et al. 2012;
Sivaramakrishnan et al. 2010b, 2012; Greenbaum et al. 2013a),
promise to extend planet formation science by enabling deeper
dust penetration at longer wavelengths. These new systems
will enable detection of very young (e.g., Taurus–Auriga star
forming region), possibly accreting gas giant planets at small
separations accessible to NIRISS NRM (Beichman et al. 2010).

In spite of the wealth of recent observational results from
NRM, the literature does not include extensive discussion
of the fundamental and practical limits associated with the
technique. Lacour et al. (2011) discussed empirical sensitivity
limits of Very Large Telescope (VLT) NACO Sparse Aperture
Masking (SAM), based on experiments with the image plane
fitting routine that we study here. Martinache (2010) showed
how NRM can be generalized to full aperture imaging in the
high Strehl ratio regime. Ireland (2013) discussed some of the

1

http://dx.doi.org/10.1088/0004-637X/798/2/68


The Astrophysical Journal, 798:68 (14pp), 2015 January 10 Greenbaum et al.

Figure 1. Pupil masks and their interferograms. Small holes produce a large PSF envelope, fringed by interference through multiple holes. The longest baselines
provides finer resolution than a full aperture. The three hole pupil at right can provide a closure phase measurement of a celestial object.

limiting factors of high contrast NRM observations, and Hinkley
et al. (2011) conducted deep NRM observations of the known
multiple planetary system HR 8799.

The purpose of this paper is two-fold. First, we continue the
development of the image plane approach to analyzing NRM
data. We address field of view, pixel sampling, plate scale and
pupil magnification stability, and some detector properties. We
show that this method typically confirms the photon noise and
flat field accuracy limits presented by Ireland (2013). In addition,
we study other factors that limit NRM contrast—requirements
on the spectral type match between a target and its calibrator
star, and the effect a finite spectral bandpass has on closure phase
errors. Second, we highlight factors that limit JWST NIRISS
NRM, which fields a seven-hole NRM (Sivaramakrishnan et al.
2012). NIRISS has the best pupil image quality of all the JWST
instruments (Bos et al. 2008), which makes it JWST’s best-suited
instrument for aperture masking interferometry. In addition,
NIRISS’s homogenous aluminum bench and optics should
help achieve uniform contraction of mechanical and optical
surfaces as the instrument cools to its operating temperature
of about 40 K. NIRISS’s all-reflective design philosophy also
mitigates against chromatic effects, which can be exacerbated
by cryogenic conditions. Finally, some relevant properties of
NIRISS NRM are described in the Appendix.

2. BACKGROUND

(Figure 2) A non-redundant mask is a pupil plane mask
typically located at a re-imaged pupil plane. It possesses several
usually identical holes arranged so that no two hole-to-hole
vectors are repeated (thus providing a non-redundant set of
baselines in the pupil). If its holes are circular, with diameter
d when projected back to the primary mirror, at a wavelength
λ its point-spread function (PSF) or interferogram is contained
in an Airy pattern envelope with a first dark ring of diameter
2.44 λ/d (Figure 1). This envelope is modulated by fringes with
half period θ = λ/2B for each baseline. Here B is the hole

separation. Figure 2 shows the JWST NIRISS mask with seven
hexagonal holes, and its PSF.

The Fourier transform of the detected in-focus two-
dimensional image intensity array is the array of complex visi-
bility, V . Because of the baselines’ non-redundancy, the fringe
amplitude and phase for each baseline or “two hole interferom-
eter” component in the NRM can be measured unambiguously.
The array of complex visibilities for a point source through un-
aberrated optics is the autocorrelation of the pupil mask. The
resulting array of complex visibilities form localized splodges
(Lloyd et al. 2006) of signal in the transform domain—concep-
tually one independent splodge (or a spodge and its dependent,
Hermitian “mirror splodge”) per baseline. Numerical Fourier
data analysis approaches measure fringe phases and fringe am-
plitudes, often at the peak of each splodge amplitude (Tuthill
et al. 2000; Lloyd et al. 2006). When using a finite bandwidth
filter, selecting a single amplitude and phase to characterize
a polychromatic fringe implicitly averages over the bandpass.
Furthermore, since windowing in the image plane leads to con-
volution in the Fourier domain, this induces a second form of
averaging within a splodge. Our image plane approach avoids
this second form of averaging, but it does perform a concep-
tually similar averaging over the bandpass. In the absence of
wavefront aberration, fringe phases for an on-axis point source
are zero. Information on source structure is contained in the
fringes that are extracted from the image.

The non-redundancy of baselines in the pupil leads to con-
straints on the complex fringe visibilities. A closure phase (the
cyclic sum of fringe phases around the baselines formed by three
holes (top right, Figure 1)) is insensitive to constant wavefront
delays (pistons) over the holes. The fringe formed by interfer-
ence of holes i and j has a fringe phase φi,j which is propor-
tional to the wavefront delay between holes φi,j ≡ φj − φi .
For a point source (in the absence of higher order aberrations)
(e.g., Readhead et al. 1988):

Δφ1,2 + Δφ2,3 + Δφ3,1

= (φ1 − φ2) + (φ2 − φ3) + (φ3 − φ1) = 0. (1)

2



The Astrophysical Journal, 798:68 (14pp), 2015 January 10 Greenbaum et al.

Figure 2. Non-redundant mask for JWST’s NIRISS pupil wheel (Sivaramakrishnan et al. 2010a) and its PSF (or interferogram) with NIRISS F430M from cryogenic
vacuum tests in 2013 November (Greenbaum et al. 2014). The interferogram’s fine structure is due to the 21 baselines generated by the 7 holes. The PSF envelope
reflects the hexagonal hole shape.

Full-aperture images do not yield closure phases, but sufficiently
high Strehl ratio images possess certain constrained linear
combinations of phases of the Fourier transform of the image
(Martinache 2010, 2011). These combinations, or kernel phases,
are useful for model fitting data when wavefront aberrations are
below ∼1 rad (Martinache 2010; Ireland 2013; Pope et al. 2013).

An N-hole mask has N (N − 1)/2 baselines, N (N − 1)(N −
2)/6 closure phases, and (N −1)(N −2)/2 independent closure
phases. Empirically, achievable dynamic range is approximately
the inverse of the standard deviation of closure phase error,
1/σCP (Lacour et al. 2011).

Closure phases of centro-symmetric sky brightness distribu-
tions are zero. Binary or multiple point source models are fit
to closure phase data to provide information on structure as
fine as λ/2B. Instrumental contributions to closure phases are
measured (in principle) by observing a point source. These con-
tributions are then subtracted from a target’s closure phases.
Instrument stability between target and calibrator leads to im-
proved NRM performance. In addition to fringe phases, a space
telescope is likely to provide stable fringe amplitudes. Closure
amplitudes (a ratio of amplitudes of fringes formed by four holes
(Thompson et al. 1986)) are useful in simple model fitting using
space-based NRM data, thereby extending NRM model fitting
to include centro-symmetric structure such as circular disks.
However, Ford et al. (2014) use simulated noisy NIRISS NRM
data to extract the fringe amplitudes and phases which they then
use to recreate the input target scene with interferometric res-
olution. They found that enforcing closure quantities on image
plane data leads to an increase in spurious image artifacts.

Currently numerical Fourier methods are the most common
approach to NRM data analysis (e.g., Monnier 2003; Tuthill
et al. 2000; Kraus & Ireland 2012; Ireland et al. 2008). This
is suited to fields of view that encompass the first few Airy
rings of the NRM PSF’s “primary beam” (the diffraction pattern
of a single hole), and pixel scales that are significantly finer
than λ/2D. Palomar Hale’s PHARO, Keck-NIRC2, and VLT’s
NACO all possess 3-5 pixels per resolution element (Metchev
& Hillenbrand 2004; Ireland et al. 2011; Tuthill et al. 2000;
Girard 2013). With such super-Nyquist fine pixellation, Fourier
methods easily identify and interpolate over isolated bad pixels
(Ireland 2013).

Diffraction-limited exoplanet imagers deploying state-of-the-
art ExAO systems now feed IFSs (Oppenheimer et al. 2012;
Macintosh et al. 2014; Beuzit et al. 2008). These imaging

spectrographs typically have limited fields of view since several
detector pixels are required for each image plane pixel spectrum,
and the angular extent of each image plane lenslet is at or below
the diffraction limit of the telescope, so the instruments are often
limited by the number of available detector pixels. NRM on
these hyperspectral imagers—Palomar’s P1640 (Zimmerman
2011; Zimmerman et al. 2012) and Gemini Planet Imager
(Sivaramakrishnan et al. 2010b; Greenbaum et al. 2013b)—must
deal with this limitation. An image plane based approach (e.g.,
Lacour et al. 2011; Cheetham et al. 2012; Greenbaum et al.
2013a) is insensitive to these restrictions on the field of view.

Future space-based NRM on JWST NIRISS (e.g.,
Sivaramakrishnan et al. 2009a, 2009b, 2010a, 2012; Greenbaum
et al. 2013a) is implemented on coarse pixel scales. Under these
conditions a numerical Fourier data reduction approach may re-
quire more data in order to reduce contamination by bad pixels.
This is more relevant to coarse—barely or sub-Nyquist—pixel
scales. Dithering to fill the image plane pixels with valid data de-
creases observing efficiency and complicates estimates of noise.
An image plane based approach sidesteps the requirement of
knowing every pixel value in the image. The image plane ap-
proach is also robust to detector non-linearities that may occur
at the centers of NRM images, since suspect pixel data can be
discarded. JWST NIRISS’s coarse pixel scales also increase its
sensitivity to non-uniform sensitivity within a pixel (intra-pixel
sensitivity, or IPS), and pixel-to-pixel variations in IPS (Hardy
et al. 2008). Image plane data reduction can take IPS into ac-
count, with a map of measured variations or a model of the pixel
sensitivities (Greenbaum et al. 2013a).

3. IMAGE PLANE MODELING

We assume the image plane complex amplitude induced by a
point source at infinity is described by the Fourier transform
of the aperture transmission function (i.e., the Fraunhofer
approximation). If functions F and f are a Fourier transform pair,

we write F
F.T .
� f . We develop a polychromatic image plane

model tailored to JWST NIRISS’s seven hole NRM (Figure 2).
Each hole is a hexagon, which, when projected to the JWST
primary mirror, has a flat-to-flat distance of approximately
0.8 m. Our model can be adapted to arbitrary hole locations
and polygonal hole shapes (e.g., Greenbaum et al. 2013b). Here
we treat circular holes with diameter d or hexagonal holes with
flat-to-flat distance D (Figure 3), utilizing a closed form for
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Figure 3. In Sabatke et al. (2005) D is the flat-to-flat distance. The hexagon is
split into two symmetric parts, ahex(x, y) and ahex(x,−y), whose transforms,
g(kx, ky ) and g(kx, −ky ) are computed analytically (Equation (6)).

the Fourier transform of a hexagon (Sabatke et al. 2005), while
noting that other more specialized derivations for this exist in
the literature (Troy & Chanan 2003). We extend the work of
Sabatke et al. (2005) to include limiting values for the analytical
expression’s three singular lines and singular central point.

We calculate the monochromatic NRM PSF at a wavelength
λ analytically, and construct polychromatic PSFs by summing
appropriately weighted monochromatic PSFs on a finely sam-
pled numerical grid. We then bin this finely sampled image
to the detector pixel scale to simulate a pixelated noiseless
NRM PSF.

We denote the pupil transmission function by A(x). A hole
with a transmission function Ah(x) produces an image plane

complex amplitude ah(k) (where ah

F.T .
� Ah) and a PSF

P = ah a∗
h (where ∗ indicates complex conjugation). If the

pupil plane vector x = (x, y) is in units of the wavelength of
the monochromatic light, the image plane (or spatial frequency)
vector k = (kx, ky) is in cycles across the pupil. P (k) is the
primary beam, by analogy with radio interferometry, and is the
envelope of the NRM PSF. Vector baselines create the finer scale
fringing in the NRM PSF.

3.1. Circular Mask Holes

A circular aperture’s transmission function is

2
∏

(x) =
{

1, r < 1
2

0, r � 1
2

, (2)

where r =
√

x2 + y2. The transmission function of a mask with
N identical circular holes centered at {xi , i = 1, ..., N} is

A(x) =
N∑

i=1

2
∏ (

x − xi

dλ

)
, (3)

(where dλ ≡ d/λ). The image plane complex amplitude of
an on-axis monochromatic point source observed through this
mask is

a(k)
F.T .
� A(x). (4)

Following the nomenclature of phase retrieval work on the
Hubble Space Telescope, we call a(k) the amplitude spread
function (ASF).

Invoking Fourier shift and scaling theorems,

2
∏(

x − x0

dλ

)
F.T .
� (dλ)2Jinc(kdλ)e−ik·x0 , (5)

where Jinc(k) ≡ J1(πk)/2k is the transform of the circular
transmission function. Here J1 is the Bessel function of the first
kind, of order 1. The phase gradient term e−ik·x0 reflects the shift
of the hole’s origin to x0.

3.2. Hexagonal Mask Holes

We denote the hexagonal hole Fourier transform by ahex(k).
Following Sabatke et al. (2005), g(kx, ky) is the Fourier trans-
form of one half of a hexagon that is bisected from one corner
to it diametrically opposite corner (Figure 3):

g(kx, ky) =
exp

[
−iπD

(
2kx√

3
+ ky

)]
4π2

(
k3
x − 3kxk3

y

) (
√

3kx − 3ky)

×
({

exp(iπD
√

3kx) − exp

[
iπD

(
4√
3
kx + ky

)]}

+ (
√

3kx + 3ky)[exp(iπDkx/
√

3) − exp(iπDky)]

)
ahex(ky, kx) = g(kx, ky) + g(kx,−ky). (6)

The function g has numerical singularities along three lines,
kx = 0 and kx = ±√

3ky . The limiting behavior along kx = 0
and at the origin is

g(0, ky) = e−iDπky

2
√

3π2k2
y

× (−1 + iDπky + eiDπky − 2iDπkye
iDπky ) (7)

g(0, 0) =
√

3D2

4
. (8)

Values along the other two lines can be found by invoking
symmetry arguments, and replacement with the appropriate
limiting value taken from the kx = 0 line.

3.3. Interference between Holes

In the absence of wavefront error the ASF of a mask with N
identical holes centered at {xi , i = 1, ..., N} is

N∑
i=1

A(x − xi)
F.T .
� a(k) = ah(k)

N∑
i=1

e−ik·xi (9)

(ah(k) is a single hole ASF). The mask’s point spread
function is

p(k) = a(k)a∗(k) = P (k)
N∑

i=1

N∑
j=1

e−ik·(xi−xj ) (10)

or

p(k) = P (k){N + e−ik·(x1−x2) + eik·(x1−x2)

+ e−ik·(x1−x3) + eik·(x1−x3) + ...},

(which is real and nonnegative for any k). The flux in this
image is the two-dimensional integral

∫
NP (k)dk, taken over
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the entire k plane. We rewrite the PSF as

p(k) = P (k)

{
N +

∑
i<j

2 cos (k · (xi − xj ))

}
, (11)

which shows the separate roles the vector baselines and the
primary beam play in the morphology of a point source’s
interferogram.

Wavefront errors {φi, i = 1, ..., N} that are constant within
each of the apertures decenter each fringe by (φi − φj ). Such
errors are termed pistons. Pistons do not move the image
centroid, since the intensity centroid is the mean of the phase
gradient over the (uniformly illuminated) pupil forming an in-
focus image (Teague 1982), and piston errors do not change
the mean wavefront slope. A piston difference between two
holes shifts the fringe away from the image centroid (or
pointing center) by an angle, the fringe phase. A shift from
one fringe maximum to the next is interpreted as an angle of
2π . Given JWST NIRISS’ anticipated image quality during
normal operations, we expect fringe phases of point source
NRM images to lie well inside the half-open interval (−π, π ].
This removes any technical difficulties associated with a fringe
phase wrapping around 2π . We stress that fringe phases are
not the argument of a “phasor” associated with the complex
amplitude of an electromagnetic wave. The expression for the
interferometric PSF in the presence of only piston errors is

p(k) = P (k)
N∑

i=1

N∑
j=1

e−ik·(xi−xj )+i(φi−φj )

= P (k)

{
N +

∑
i<j

2 cos (k · (xi − xj ) + (φi − φj ))

}

= P (k)

{
N +

∑
i<j

2(cos (k · (xi − xj )) cos (φi − φj )

− sin (k · (xi − xj )) sin (φi − φj ))

}
. (12)

3.4. The JWST NRM PSF

For JWST NIRISS’s 7-hole hexagonal mask, Equation (12)
gives

p(k) = P (k)
{
7 + 2 cos (k · (x1 − x2)) cos (Δφ1,2)

− 2 sin (k · (x1 − x2)) sin (Δφ1,2)

+ 2 cos (k · (x1 − x3)) cos (Δφ1,3)

− 2 sin (k · (x1 − x3)) sin (Δφ1,3) + · · · }. (13)

With this closed form rapid calculation of monochromatic
and polychromatic PSFs on a fine scale is straightforward.

3.5. Linear Fit

Piston differences enter into Equation (13) as coefficients of
the sines and cosines describing the baselines’ fringes. NIRISS’s
seven-hole mask has 42 such fringe coefficients—cos Δφi,j ’s
and sin Δφi,j ’s, which we rename aij’s and bij’s, respectively.
Two additional parameters are required to match the model to
data: the average flux per hole, F, and a DC offset C:

FP (k)

{
N +

∑
i<j

2[cos (k · (xi − xj )) cos(Δφi,j )

− sin (k · (xi − xj )) sin(Δφi,j )]

}
+ C. (14)

These 44 parameters can be estimated from image plane pixel
data by using an unweighted linear least squares minimization
of the quantity

||data − model(aij , bij , F, C)||
and performing a matrix inversion to recover the parameters.
We did not detect significant improvement of a noise-weighted
fit over an equally weighted fit, so we use the latter. The piston
differences, or fringe phases, are found with

Δφij = arctan(bij /aij ). (15)

For uniformly transmissive optics throughput, no scattered light,
no significant high spatial frequency wavefront errors, and
perfect detectors we expect the trigonometric identity

b2
ij + a2

ij = 1

to hold when imaging a point source. Model parameters derived
from fitting real data rarely obey this identity. Instead, we obtain
the square of the ij th fringe visibility:

b2
ij + a2

ij = VijV∗
ij . (16)

Target structure further reduces fringe visibility. We calculate
fringe visibilities in our simulated data sets by measuring
coefficients {aij , bij }. We calculate all 35 possible closure phases
in NIRISS’s seven-hole NRM. Only 15 of these are independent
measurements.

We evaluate our model PSF on a 3 × 3 sub-pixel grid (unless
otherwise noted) so we can study sub-pixel effects, and then
bin the array to the detector pixel scale. A full pupil distortion
model was not used in this study, although real data will require
detailed knowledge of the NRM-to-primary mapping.

A polychromatic model is generated with an appropriately
weighted sum of each monochromatic fringe model, given the
bandpass profile:

model =
∑

λ

FλP (kλ)

×
{
N +

∑
i<j

2[cos(kλ · (xi − xj )) cos(Δφi,j )

− sin(kλ · (xi − xj )) sin(Δφi,j )]

}
. (17)

In the presence of non-zero piston error the model in
Equation (14) does not fit polychromatic data perfectly, be-
cause piston error scales inversely with wavelength. This means
that the fringes’ coefficients, cos(Δφi,j ) and sin(Δφi,j ), them-
selves vary with wavelength, but our fit keeps these coefficients
constant over the bandpass. The narrower the fractional band-
width of the filter, the smaller the variation of these coefficients.
This problem is common to both the image plane as well as the
numerical Fourier approach to NRM data analysis. The least
squares solution (Equations (15) and (16)) produces an estimate
of fringe phase and amplitude that describes some average over
the bandpass. We use this estimate in our polychromatic studies.

3.6. Applicability of the Model

NRM is suited to wavefronts that are smooth over each hole
in the mask. Our model assumes flat wavefronts over each hole,
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Figure 4. Asserting the static pistons from Table 2 in this simulated PSF produce
asymmetric features.

Table 1
JWST NIRISS Filters for NRM

Filter λC δλ/λ λ/2D

(μm) (mas)

F480M 4.8 0.08 76
F430M 4.3 0.05 68
F380M 3.8 0.05 60
F277W 2.7 0.25 44

Notes. λC is the filter central wavelength, and δλ is the
half-power width of the filter. The Nyquist pixel scale
λ/2D uses the nominal equivalent area JWST mirror
diameter D = 6.5. NIRISS’s pixel scale is 65 mas.

which averages over fine wavefront structure in some manner.
A Fourier approach windows image data, which also averages
phase and visibility information (since image plane windowing
is a convolution in the Fourier domain). However, the two
approaches propagate image plane noise differently. We discuss
the effects of high spatial frequency wavefront error in Section 6.

Table 1 describes NIRISS NRM filters relevant to exoplanet
studies. We study filter bandpass, source temperature, and
spectral type effects using our polychromatic PSF model. When
using F277W and F380M, NIRISS’ 65 mas square detector
pixels are coarser than Nyquist-sampled.

4. PHOTON NOISE, FLAT FIELD ERROR, AND
INTRA-PIXEL SENSITIVITY

We inserted piston wavefront errors over the holes (Table 2
and Figure 4) to examine their effects on simulated monochro-
matic images. Our pistons are all smaller than λ/4, which avoids
phase wrapping.

We generate monochromatic 4.3 μm images either 3 or
5 times finer than the NIRISS pixel scale prior to binning to
its detector scale and performing a least squares determination
of the 44 model parameters. We measure closure phase standard
deviation for different noise parameters for a set of 15 indepen-
dent closure triangles (Figure 5). In the absence of added noise
our measured closure phases were numerically indistinguish-
able from zero.

Figure 5. Closure triangles: the set of 15 independent closure triangles
corresponding to the figures in Sections 4–6, ordered by increasing perimeter.

Table 2
Simulation Static Pistons

Piston in Waves at 4.3 μm

+0.02884
−0.06150
+0.12400
−0.02040
+0.01660
−0.03960
−0.04780

Notes. Our simulations use a set of
uniformly distributed, random static
pistons with a mean of zero and
standard deviation 0.06 waves. An-
ticipated JWST NIRISS rms wave-
front error at 4.3 μm is approximately
λ/30.

We find that the quality of the fit does not change significantly
with field of view (i.e., the number of pixels used). We used
data within the first dark Airy ring of the primary beam in all
simulations.

We distinguish between two types of closure triangle response
to different sources of noise or error.

1. Baseline-independent behavior limits contrast at all spatial
frequencies similarly.

2. Baseline-dependent behavior varies with baseline length
and therefore closure triangle. This behavior preferentially
limits contrast at higher frequencies, or smaller angular
resolution.

4.1. Photon Noise

We investigate a range of exposures, from 104 to 1011

photoelectron counts (assuming coadding of multiple exposures
regardless of pixel well depth). We calculate the standard
deviation of each of the 35 closure phases over 25 independent
realizations, and plot the mean of these standard deviations, σCP,
as the solid line in Figure 6. Our results are consistent with the
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Figure 6. Exposure time (monochromatic): the mean closure phase standard
deviation for a range of exposure. The solid red line shows our simulation
results; the dotted black line displays the noise limit of Ireland (2013). The
inset shows one example of σCP for each of the 15 triangles in Figure 5 for an
exposure with 109 photons. Photon noise induces baseline-independent errors.

Ireland (2013) result

σCP =
√

1.5
N holes√

N phot

indicated by the dotted line. The inset plot in Figure 6 displays
the behavior of the closure phases plotted in order of increasing
closure triangle perimeter. Photon noise contributes baseline-
independent error.

4.2. Flat Field Error

We simulated multiplicative flat field error with an arrays of
uncorrelated pixel-to-pixel noise drawn from a Gaussian dis-
tribution. The standard deviation of the Gaussian distributions
range from 0.03% to 3%. Figure 7 shows our simulation along-
side the Ireland (2013) result:

σCP � 0.3σF .

The small offset between the two results may be a difference in
number of pixels used or in the way error is modeled. Both
results show the same trend. Flat field error is a baseline-
independent effect.

4.3. Pixel-to-pixel Variations in Intra-pixel Sensitivity

We use a data-based model of the NIRISS detector’s intra-
pixel sensitivity (Hardy et al. 2008). The pixel has maximum
sensitivity at its center, but the sensitivity drops smoothly to
80% ± 5% of its peak at the pixel corners (Figure 8(B)–left).
We implement a parabolic drop-off of sensitivity within a pixel.

Lauer (1999) describes a single image (integrated over each
pixel) on a detector as

I (x, y) = O(x, y) ∗ P (x, y)(III(x, y) ∗ �(x, y)), (18)

where the image is a convolution of the object, O(x,y) and the
PSF P(x,y) multiplied by a sampling function convolved with
the intra-pixel response, �(x, y). If �(x, y) is symmetric it will
not contribute phase to the transform of the image. However,

Figure 7. Flat field error (monochromatic): σCP, averaged over closure triangles,
is compared to varying uncertainty in flat field, σFF. The solid red line shows our
simulation results. The dotted black line displays a similar numerical result from
Ireland (2013). Uncorrelated flat fielding error induces baseline-independent
errors.

the intra-pixel sensitivity is not the same for all pixels, and/or
is not symmetric, so is likely to contribute fringe phase error.

Uncharacterized IPS variations are prone to have a larger
effect on coarsely sampled images than finely sampled ones.
Figure 8 compares the effects of sampling frequency when IPS
varies from pixel to pixel. We compare the sampling in NIRISS
F277W and F430M bands, and GPI H and K bands as illustrative
examples.

Here we assume that flat fields are known perfectly, so
we use uniform and symmetric pixel-to-pixel weighting in
our model (Figure 8(B)–left) and fit data with many realiza-
tions of IPS drawn from the model we describe above (e.g.,
Figure 8(B)–right). We renormalize the total pixel efficiency to
maintain a constant net sensitivity of each pixel to avoid con-
founding flat-fielding error with IPS effects. Figure 9 shows
increasing closure phase error for increased coarseness in pixel
scale. Although NIRISS’ F277W suffers most from IPS varia-
tion, we can still achieve below 10−3 radians in closure phase
error with the 5% uncertainty in IPS. Fine scale dithering
(Koekemoer & Lindsay 2005) and careful individual pixel IPS
calibration could mitigate our sensitivity to worse-than-Nyquist
pixel scales. We note in passing that the NIRISS F277W filter
presents an interesting science opportunity for faint companion
imaging. F277W covers an H2O absorption feature that could
help constrain planet chemistry and dust grain models (Cushing
et al. 2006; Stephens et al. 2009; Currie et al. 2013).

IPS modeling can also help determine fractional-pixel po-
sitioning of objects on the detector, by cross-correlating image
data with analytically generated reference PSFs at different sub-
pixel centerings (Greenbaum et al. 2013a).

5. PSF MAGNIFICATION AND SPECTRAL
THROUGHPUT

Uncertainty in the coordinate scaling of the PSF affects
our linear fit. Scaling errors could arise from hole size or
central wavelength uncertainty. Coordinate scaling magnifies
the PSF envelope and contributes errors, particularly to longer
baselines. The PSF magnification in the data can be determined
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Figure 8. Intra-pixel sensitivity: a comparison between uniform IPS and pixel-to-pixel IPS variations (Hardy et al. 2008) on detectors with sub- and super-Nyquist
pixellation. (A) Top left panel shows the sub-pixel sensitivity variation of two rows of 11 pixels, one with uniform IPS and the other with IPS realizations drawn
from the statistical model. (B) A single pixel whose sensitivity drops quadratically to 80% at its corners, and an oversampled map of 11 × 11 pixels drawn from the
statistical IPS model. (C) On the left, a finely sampled fringes (5× finer than the detector sampling) with varying IPS. On the right, the same response binned to the
detector scale. At 2.77 μm the sampling is too coarse to detect the fringe peaks, which are aliased—only one peak is visible, though there are actually three. (D) The
difference between image pixel counts for simulated detectors with uniform pixels and varying IPS. F430M (just Nyquist sampled) and F277W (about half Nyquist)
show the largest errors. The two well-sampled GPI H and K2 bandpasses show much smaller errors. Figure 9 quantifies closure phase errors in these situations.

by cross-correlating the power spectrum of the data with power
spectra of model PSFs created using a range of pupil scales.
An NRM can be used to determine plate scale of IFS data
cubes, thus providing an independent check of either plate
scale or wavelength calibration in the hyperspectral data cubes
(Greenbaum et al. 2013b).

Mask geometry or mask scale uncertainties will contribute
errors in the closure phase when there are static pistons. Without
static phase errors (i.e., with a symmetric PSF) there should
be no error in closure phase. An asymmetric PSF (resulting
from static piston error), however, will produce baseline-
dependent closure phase errors, even when the model perfectly
matches the data. We demonstrate that random static phases
produce baseline-dependent closure phase error when fitting
a polychromatic image, regardless of whether the model is
monochromatic or polychromatic. Below about λ/10 waves (at
the central wavelength) rms piston error the closure phase error
scales with piston error. The effect is negligible when piston is
below small fractions of a wave, when the PSF is sufficiently
symmetric. In this section we use pistons that are uniformly
distributed with an rms piston of 0.06 waves and zero mean
(Table 2).

5.1. Hole Size Tolerance

The mask geometry must be known well to fit the diffractive
image model to data. We simulate masks with seven identical
holes. We used a Gaussian distribution of mask hole sizes with
varied uncertainties and mean hole diameter d, the NRM hole
size for NIRISS. Figure 10 compares hole size error σd to
σCP. Contrast drops steeply with uncertainty in hole size in
the presence of piston errors.

5.2. Fitting Medium- and Wide-band Data

NIRISS has three medium-band (5%–8% fractional band-
width) filters intended for exoplanet science with NRM.
Additionally, the wide-band F277W filter (25% fractional band-
width) may also be scientifically interesting, despite its coarse
sampling. Figure 11 demonstrates that a polychromatic model
matches the data better than a monochromatic model, by about
an order of magnitude. Closure phase errors for finite-bandwidth
images with pistons are highly baseline-dependent. The errors
vary by orders of magnitude between different closure trian-
gles. Closure phase errors also depend on the shape of the band-
pass for a given realization of piston errors, when fitting with a
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Figure 9. Varied intra-pixel sensitivity (monochromatic): closure phase errors
resulting from a range of distributions of IPS. The relative edge sensitivity is
varied, while maintaining a uniform net pixel quantum efficiency (see the text).
NIRISS detector sampling at 2.77 μm and 4.3 μm, and GPI sampling at K2
(2.3 μm) are shown.

Figure 10. Hole size errors (monochromatic): we calculate σCP with a range of
errors in hole diameter. Hole size only affects PSF envelope scaling, which is
easily measured in the Fourier plane. Wavelength scales the entire PSF.

Figure 11. Fitting finite bandwidth data: Using a monochromatic model to fit
finite bandwidth data achieves our required contrast only when the fractional
bandwidth is �1%. Using a polychromatic model improves contrast by an order
of magnitude. These closure phase errors are baseline-dependent, and are highly
sensitive to the particular configuration of holes and pistons.

Figure 12. Spectrum errors and static piston in the pupil: we measure closure
phase for polychromatic data with different levels of piston simulated with
NIRISS’s F430M filter and fit with a polychromatic model. The dependence
is roughly linear when the pistons are below λ/10 at the central wavelength
λc = 4.3 μm.

Figure 13. Bandpass shape: we fit noiseless polychromatic data generated with
bandpasses of positive or negative slopes (difference in counts between the
edges of the bandpass) with both a monochromatic model (4.3 μm), and a
polychromatic model (λc = 4.3 μm) matching the bandpass. Surprisingly, the
data are not fit best at zero slope with a polychromatic model. The shape of the
bandpass can add small but significant errors because of averaging discussed in
Section 3.5. Bandpass shape introduces baseline-dependent errors.

polychromatic model. Figure 11 suggests that mismatch in cen-
tral wavelength can introduce large errors in closure phase.

Unless otherwise noted, we use the pistons described in
Table 2 in these simulations. When there are no pistons in the
pupil, error in the source spectrum should not contribute closure
phase errors because the PSF remains symmetric. To explore
how much piston affects closure phase error for polychromatic
data fit with the model described in Equation (17), we simulated
data with piston at small fractions of a wave and measured the
resulting closure phase. The set of pistons in Table 2 were scaled
uniformly to preserve the character of the errors while changing
the size of the error. Closure phase error scales with the level of
static piston up until an rms piston of about λ/10 (Figure 12).

Fitting polychromatic data with a polychromatic model will
only introduce closure phase errors when there are non-zero
pistons in the pupil and the PSF has asymmetries. The gross
characteristics of the net throughput (filter × source spectrum)
sets a floor on raw contrast (Figure 13). This is likely because of
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Figure 14. Spectrum error (polychromatic): (A) Left: transmission profiles for F430M and F277W NIRISS filters. Right: spectral profiles seen through the two
NIRISS filters: blackbody spectra from Teff = 12,000 K to Teff = 200 K (subplot B) and stellar-type spectra (Castelli & Kurucz 2006) from M0V to O3V (subplot C).
Large changes in spectral type do not strongly affect the slope of the spectrum. (B) The closure phase error (standard deviation over triangles in solid) plotted against
blackbody temperature of simulated polychromatic data. The model temperature is Teff = 12,000 K. Dashed lines represent individual closure triangles. (C) Closure
phase is plotted against mismatch in stellar-type between the model created with an O3V stellar spectrum at a central wavelength λc = 4.3 μm for 5% (blue) and 20%
(green) bandpasses. Closure phases for all of 15 triangles are in dotted lines and their standard deviation in solid.

the piston averaging mentioned in Section 3.5. Polychromatic
fitting is robust to smaller differences in throughput (e.g., slope)
between the model and data.

JWST is anticipated to have 80% Strehl Ratio at 2 μm. If
its all wavefront error is in piston, piston standard deviation
should be about 0.035 waves at 4.3 μm. These values fall below
λ/10 for the F430M filter. We assume that the filter is well
known but the source spectrum is not. We investigate mismatch
in blackbody spectrum (i.e., temperature) as well as an incorrect
choice of stellar spectral type. We generate point source images
for NIRISS F430M and F277W at a range of temperatures and
stellar spectra, and fit each to either a T = 12,000 K blackbody
or an O3V star model.

Figure 14(A) displays the F430M and F277W filter transmis-
sions and range of blackbody curves, from our modeled spec-
trum at T = 12,000 K down to T = 200 K. Figure 14(B) dis-
plays raw closure phases for all of the 15 independent baselines
and their standard deviation from fitting an incorrect black-
body model (T = 12,000 K) to data simulated at our range
of temperatures. Similar to the bandpass shape simulation in
Figure 13, there is an overall throughput shape that yields best
sensitivity, though this behavior varies depending on baseline.
The polychromatic image plane model is robust to a large error in
blackbody temperature, up until the blackbody slope turns over
for extremely cool objects (e.g., cooler than 670 K at 4.3 μm).

We repeat the same procedure with a range of stellar pho-
tosphere models from Castelli & Kurucz (2006) to examine
the effect of stellar type mismatch on closure phase sensitivity.
Figure 14(A) shows that the range of stellar spectra from O3V
to M0V stars in the two JWST filters do no differ much by slope.
We model a flat bandpass centered at λc = 4.3 μm at 5% and

20% to introduce the same rms piston. Figure 14(C) shows the
raw closure phase error when the two models (using stellar type
O3V) are fit to this range of spectra. The polychromatic image
plane model shows similar robustness to poor knowledge of the
stellar spectral type.

Polychromatic model fitting will not be a limiting factor
on raw contrast for the narrowest filters with less than 0.06
waves rms piston, but becomes more of a concern for wide-
band images, especially at shorter wavelengths. For small piston
WFE, raw contrast for NRM with the F277W filter is not limited
by the size of the bandpass compared to the effect of intrapixel
sensitivity or flat field errors.

6. HIGHER SPATIAL FREQUENCY WAVEFRONT ERROR

Wavefront errors can introduce both amplitude and phase
aberration in an image. NRM is most effective in the low
spatial frequency wavefront error regime; closure phases are
insensitive, to first and second order, to piston wavefront error
(Ireland 2013). Wavefront errors on mirror segments often span
a range of spatial frequencies. We used WebbPSF (Perrin et al.
2012) to simulate NIRISS NRM PSFs with low-to mid-spatial
frequency wavefront errors, including segment tip and tilt, and
figure errors on the segments and instrument optics.

We first explore the contribution of tip/tilt error by intro-
ducing randomly oriented tilts on simulated JWST mirrors. In
Figure 15 each trial has a fixed tilt magnitude, which we place
on 6 mirrors. We require a mean tilt of zero by constraining the
last mirror so that we do not actually shift the centering of the
PSF. Closure phase errors of 10−4 result from segment tilts of
the order of half a resolution element.
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Figure 15. Tilts and higher order wavefront error: Top: we measure σCP from 100 different tilt error simulations of various sizes of tilt. An instance of tilt over each
hole is inset in the top panel. Bottom: σCP from fitting 10 different ∼140 nm rms JWST NIRISS wavefront realizations containing higher order wavefront error (Knight
et al. 2012). PSFs were generated with WebbPSF software (Perrin et al. 2012).

Figure 16. LkCa15 with JWST NIRISS: the theoretical closure phases for a
single binary companion predict a required contrast ≈1/σCP empirically. The
plot shows σCP over all possible triangles through NIRISS F277W and F430M
filters. If F277W observations can reliably measure closure phase below 10−3,
they could detect the K ′ signal of the companion structure around LkCa15,
according to Kraus & Ireland (2012). Two of their three companion sources lie
between λ/2D and λ/D at 2.77 μm.

We also calculated closure phases for 10 different PSF
realizations of ∼140 nm rms optical path delay (OPD) on the
JWST primary (Knight et al. 2012) using WebbPSF (Figure 15).
These sample OPDs do not contain significant segment tilt
or global focus. Fitting simulated data with this WFE yields
σCP = 10−3.5.

7. DETECTING THE COMPANION AROUND LkCa15
WITH JWST NIRISS

We consider the case of LkCa 15, which has a detected
companion inside its disk gap, to compare simulated NIRISS
NRM to current ground-based NRM. In Figure 16 we plot the
theoretical binary closure phase signal for the mask on NIRISS

at 4.3 μm and 2.77 μm for two flux ratios: 10−2 and 10−3.
The red stars mark the Keck Telescope K ′ and L′ detections
of companion structure around LkCa15, a transitional disk with
potential planet-forming bodies (Kraus & Ireland 2012). The
LkCa15 detections fall between 0.5λ/D and λ/D for 2.77 μm
(D referring to longest baseline), and are detectable with contrast
better than 10−3.

The F277W filter, at shorter wavelength, will access smaller
inner working angles, relevant to following up close companions
detected with large apertures on the ground. Following our
analysis in Sections 4–6, we conclude that F277W would
be able to achieve raw contrast of 10−3 with good flat field
measurements and IPS characterization. With this performance
NIRISS would be able to detect the LkCa15 companion signal
in a routine observation.

At 2.77 μm, λ/2B ∼ 88 mas for NIRISS NRM. Detections
this close to the diffraction limit maybe challenging from a mod-
eling perspective. The anticipated stability of NIRISS NRM’s
visibility amplitudes may help in breaking contrast-separation
degeneracies more securely than in similar ground-based data.
Multi-band observations may also help resolve degeneracies
between separation and contrast. While the angular separation
LkCa15’s companions may still pose a challenge, NIRISS will
likely achieve better contrast than ground-based NRM.

8. DISCUSSION AND RECOMMENDATIONS

Our analysis of the limits on raw contrast helps develop
instrument tests, calibration needs, and observing strategies
for JWST NIRISS. We applied our analytic model to NIRISS’
cryogenic test data (Greenbaum et al. 2014). The necessary
conditions for 10−4 closure phase error with NIRISS NRM
depend strongly on detector behavior and other instrument
and telescope details. Instrument characterization and accurate
pointing and dithering, coupled with point source calibration
of science target data could help achieve this contrast goal
for routine NIRISS observations. Because of thermal drift
and the planned occasional wavefront control activity in flight
(Lightsey et al. 2004; Gardner et al. 2006; Makidon et al.
2008), near-contemporaneous acquisition of target and point
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source calibrator data is desirable. Since NIRISS point source
calibration involves system-wide complexities we defer study
of it here. NRM paired with the sub-Nyquist sampled F277W
filter should provide about 7.5 mag raw contrast, which could
be useful for probing water absorption features.

Identifying outlying image pixels is straightforward with our
analytical model fit. Our algorithm also makes for more efficient
observing strategies since missing pixel data do not need to be
filled in with dithered observations. Pixel-to-pixel variation in
sub-pixel scale differences is easily incorporated in a statistical
or detailed manner in our model fit approach, and saturated
pixels can be ignored in the fit. This is relevant to NIRISS, with
its barely-Nyquist pixel scale and JWST’s limited lifetime.

Flat field errors of 0.1% limit raw monochromatic contrast to
a few ×10−4. Precise positioning of the target and calibrator
on the same pixel will reduce the effect of flat field errors
(Sivaramakrishnan et al. 2009b). Knowledge of intra-pixel
sensitivity can be used to improve astrometry and reduce fringe
phase measurement errors (Greenbaum et al. 2013a). Intra-
pixel sensitivity (IPS) variations over the detector limit contrast,
especially for the shorter wavelength NIRISS F277W and
F380M filters. However, knowledge of the IPS can ameliorate
this. We demonstrated that a statistical understanding of IPS
variations can help markedly. As with flat field errors, repeated
placement of targets to sub-pixel accuracy will benefit NIRISS
NRM’s contrast.

Small scaling errors may introduce closure phase errors
when there are static piston in the pupil. Matching magni-
fication between data and model is straightforward in the
Fourier domain. For instruments that have IFSs, this technique
can be used either for wavelength or for plate scale calibra-
tion of individual hyperspectral cube slices (Greenbaum et al.
2013b).

NIRISS NRM data analysis in the image plane will benefit
from polychromatic modeling. The necessary piston averaging
at the band’s central wavelength will contribute closure phase
errors when there are non-zero pistons in the pupil. However,
the modeled bandpass is fairly robust to errors in source
spectrum, as long as the spectrum slope sign is correct. Raw
contrast from F277W observations will be reduced because of its
wider bandpass, and because F277W will see higher instrument
WFE at its shorter wavelength. However, with the anticipated
WFE for JWST, its bandpass should not be the limiting factor
for contrast.

The primary contrast limiting factors are pixel-to-pixel
(flat field) variations and IPS variation for the coarsest
sampled F277W filter. In comparison contrast will be largely
unaffected by uncertainty in source spectrum if the modeled
bandpass roughly matches the data. While these various system-
atics limit raw contrast, additional sensitivity will be possible
through point-source calibrations and leveraging stable closure
amplitudes.

Flat field errors can also effect closure phase measurements
from IFS images. but higher order wavefront error from atmo-
spheric effects may be the biggest limiting factor on the ground.
These higher order errors certainly exist on ground-based instru-
ments like GPI, and may contribute amplitude as well as phase
errors. JWST NIRISS’ wavefront error is expected to be dom-
inated by low order terms, and stay below about 160 nm rms.
Fitting uncorrelated pistons with our analytic model is robust
to low-order wavefront errors including tip and tilt. A thorough
study of the effects of higher-frequency wavefront error in the
NRM PSF is warranted.

Table 3
Nominal NRM Hole Centers in JWST

Primary Mirror Space

Segment V 2 V 3
(mm) (mm)

C1 1143 1980
B2 2282 1317
C2 2286 0
B4 0 −2635
B5 2282 −1317
B6 2282 1317
C6 1143 1980

Space-based NRM presents opportunities for extended object
imaging at high angular resolution. Centro-symmetric structures
require amplitude measurements, which will be stable in the
absence of atmospheric effects. Space-based NRM’s fringe
phase and amplitude measurements provide true imaging, which
can benefit AGN and quasar science (Ford et al. 2014), so our
image plane model could improve observing efficiency and data
reduction methods for space-based high resolution imaging. An
analytic point source model is a step towards more sophisticated
forward-modeling of NRM data.

We acknowledge Ron Allen, Anthony Cheetham, Erin El-
liot, Étienne Artigau, and Rémi Soummer for useful com-
ments and both anonymous referees for insightful sugges-
tions. This material is based upon work supported in part
by the National Science Foundation Graduate Research Fel-
lowship Program under grant No. DGE-1232825, by NASA
grant APRA08-0117, and the STScI Director’s Discretionary
Research Fund.

APPENDIX

THE JWST NIRISS NON-REDUNDANT MASK

NIRISS’s non-redundant mask design exposes the central
parts of 7 of JWST’s segments in the outer ring of 12 seg-
ments. Table 3 defines the nominal, as-designed, mask in pri-
mary mirror space (shown in Figure 17). The mask’s throughput
is approximately 15% of the full aperture throughput (assum-
ing spatially uniform primary mirror reflectivity). Thus the ex-
pected theoretical peak NRM PSF intensity is 1/(0.15)2 = 44
times fainter than the corresponding the full aperture PSF.
In practice details of image centering, finite angular size of
pixels, filter bandpass, source spectrum, and the intra-pixel sen-
sitivity will cause slight deviations from this ratio. NIRISS’s
F380M, F430, and 480M filters provide sufficiently fine sam-
pling on its 65 mas pixel scale detector. NIRISS is Nyquist
sampled at 4 μm. We have demonstrated reduced but still sci-
entifically interesting capability for NIRISS’s NRM when used
with the wide band F277W filter as well.

Table 4 shows a rough comparison of the estimated ther-
mal backgrounds assuming Keck-NIRC2’s nine-hole mask and
JWST NIRISS’ seven-hole masks in many of the filters that are
used with their NRMs. We assume that the ground-based mask
itself is cooled, so does not contribute to the thermal back-
ground. Ground-based NRM is restricted to brighter adaptive
optics guide stars, is limited by thermal background longward of
3 μm, but delivers better angular resolution than NIRISS’ NRM.
On the other hand, JWST NIRISS’ NRM extends to 4.8 μm with
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Table 4
Estimated Thermal Background Rates for a Ground-based 10 m Telescope (left) and JWST NIRISS (right)

Wavelength Bandwidth Background Wavelength Bandwidth Background
(μm) (%) (e− s−1 pixel−1) (μm) (%) (e− s−1 pixel−1)

1.65 20 5 × 10−4 2.77 25 0
2.20 20 6 × 10−1 3.80 5 9 × 10−2

3.50 20 1 × 103 4.30 5 4 × 10−1

4.30 20 1 × 104 4.80 8 5 × 10−1

Notes. This rough estimate uses typical operating temperatures (273 K for a ground-based telescope and 50 K for
JWST and NIRISS, and assumes that the thermal background for the ground-based telescope is entirely due to
warm mirrors. On JWST NIRISS the entire opaque mask area will be the dominant source of thermal background.
We use an emissivity of 0.1 for the warm Keck mirrors, and a system efficiency of 0.5 for both cases.

Figure 17. Layout of the seven-hole NIRISS NRM mask in JWST primary mirror
coordinates (after Sivaramakrishnan et al. 2009b). The (V 2, V 3) axes are in the
plane of the JWST pupil. A viewer located at the secondary mirror and looking
at the reflective surface of the primary mirror would see this mask projection and
segment arrangement. The centers of the 18 segments (designated A1-6, B1-6,
and C1-6) are labeled. The NRM’s holes are nominally centered on the segment
they expose. The holes are 0.8 m flat-to-flat when projected back to the primary
mirror. The average segment flat-to-flat distance is approximately 1.32 m if
there were no inter-segment gaps. The mask’s holes are undersized so as to stay
within the parent segment in the presence of a linear pupil misalignment of up
to 3.8% of the diameter of the pupil’s circumscribing circle, viz., 6603.5 mm at
operating temperature (P. Lightsey 2011, private communication; M. Beaulieu
2011, private communication). All these numbers will need to be refined when
the as-built pupil distortion is measured on the ground and in flight.

no appreciable thermal background, so it should be able to ob-
serve much fainter targets than are available to instruments such
as Keck-NIRC2 NRM. We note that thermal background limits
Keck-NIRC2’s L′ and Ms filters to exposures of the order of
0.27 and 0.14 s respectively.
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