

Outline

Recap of JWST MOS with NIRSpec

Demo with a science case

Outline

Recap of JWST MOS with NIRSpec

Demo with a science case

MSA characteristics

250 000 micro shutters on a fixed grid Micro-shutter FoV: 0.2"x 0.46" FoV: 3.6'x3.4' λ : 0.6- $5.3 \ \mu\text{m}$ Resolution: ~ 100/1000/2700Very accurate astrometry recommended (5mas)

NIRSpec Focal plane

©Muzerolle

NIRSpec Focal plane

©Muzerolle

MSA operability map

Default observing strategy: slitlet nods

Nodding (0,2,3,5 points)

- default in mini-slits to subtract brackground
- can be combined with dithering

Fixed dithering patterns (recommended)

- translate the source to other slitlets
- all sources are observed at each point

Flexible dithering patterns

- user-specified spatial and dispersion offset
- some sources can be observed once
- handle relative distortion (usefull for large dithers)

Review your IR vocabulary

 $N_{\rm f}$ is the number of frames averaged in a group $N_{\rm g}$ is the number of groups in an integration (ramp) $N_{\rm int}$ is the number of integrations (ramps) $N_{\rm exp}$ is the number of exposures per visit

NIRSpec MOS readout patterns

NRSRAPID: N_f=1, t_f=10.7s

NRS: N_f=4, t_f=42.8s

Both with IRS²:

improved sensitivity (longer t_f and higher data volume)

Target acquisition (MSTA) is needed

TA type	Estimated Delivered TA accuracy	Catalog relative astrometric accuracy	Science Goal
Optimal 5-20 ref. stars	<20 mas (0.1 shutter width)	~ 5 mas	Best possible photometric accuracy
Relaxed 5-20 ref. stars	<~ 50 mas	< 40 mas	Extended sources, or reduced flux accuracy w/ MSA
Verify Only – no TA, just GS acq	~100 mas TBD	NO reference stars required.	Limited MSA science

NIRSpec MSA observing planning

- 1. HST/NIRCAM pre imaging for high-accuracy input catalog
- 2. Input catalog:
 - Design primary and filler
 - Weigthing by importance
- 3. Choose slitlet pattern
- 4. Choose dispers
- 5. Choose a pointing constraint => affect # observed sources
- 6. Choose a dithering pattern
- 7. Use the MSA Planning Tool (MPT) on the APT
 - ⇒ Orient, poiting, and placement optimization calculation to observe the maximum number of sources

MPT margin affects # observed sources

5 shutter magins to limit slit loss at the cost of pointing restrictions

©Muzerolle

Outline

Recap of JWST MOS with NIRSpec

Demo with a science case

JWST Cycle 1 proposals are due by Apr 6, 2018, in a single phase.

Demo: NIRSpec MOS

MOS of distant galaxies

© ESAC Workshop

Goal: Study the evolution of galaxies from z>10 to z=2-6 to understand the early stage of galaxy formation, the role of galaxies in the reionization, measuring SMF and role of AGNs

Method: NIRCAM pre-imaging and NIRSpec MSA of the HUDF at low and medium resolution (F100LP, 170LP, 290LP). Nodding and dithering (3 slitlets). Aim for SNR of ~5-10 on a 26.5 Abmag z=6 blue-compact galaxy and an emission line galaxy

Source: Deep field

Other useful informations

All JWST data will be reduced by the STScI pipeline (python) Additional sets of tools are available for analysis http://ssb.stsci.edu/doc/jwst/jwst/introduction.html

Simulated datasets are available for training http://archive.stsci.edu/jwst/simulations/index.html

Everything you need to know (observatory, planning, policies, data): JDox jwst-docs.stsci.edu

