

JWST aperture masking interferometry and kernel phase imaging accessible to everyone

Making

JWST aperture masking interferometry and kernel phase imaging

accessible to everyone

every astronomer

1. Data reduction

From raw data to OIFITS/KPFITS

1. Data reduction
From raw data to OIFITS/KPFITS

2. Model fitting

From OIFITS/KPFITS to companion detection map/contrast curve

1. Data reduction
From raw data to OIFITS/KPFITS

2. Model fittingFrom OIFITS/KPFITS to companion detection map/contrast curve

3. Image reconstruction From OIFITS/KPFITS to scene image

- 1. Data reduction
 From raw data to OIFITS/KPFITS
- **2. Model fitting**From OIFITS/KPFITS to companion detection map/contrast curve
- **3. Image reconstruction** From OIFITS/KPFITS to scene image

1. Data reduction

AMI KPI

1. Data reduction

AMI

STScI stage 1 & 2 pipelines

+

STScl stage 3 pipeline based on ImPlanelA

https://github.com/spacetelescope/jwst

KPI

1. Data reduction

AMI

STScl stage 1 & 2 pipelines

+

STScI stage 3 pipeline based on ImPlanelA

https://github.com/spacetelescope/jwst

KPI

STScI stage 1 & 2 pipelines

+

Custom stage 3 pipeline based on XARA

https://github.com/kammerje/xara/tree/develop

```
import os
# Set up CRDS environment variables (required for JWST data reduction pipeline).
os.environ['CRDS PATH'] = 'crds cache'
os.environ['CRDS SERVER URL'] = 'https://jwst-crds.stsci.edu'
# Import kernel phase pipeline from XARA.
from xara.calwebb kpi3 import KPI3Pipeline
# Get calints files.
idirs = ['kerphase realdata/NIRISS/comm run2 s2/']
files = []
for idir in idirs:
   files += sorted([idir+f for f in os.listdir(idir) if f.endswith(' calints.fits')])
# Run each file through pipeline.
for file in files:
   # Stage 3.
    result3 = KPI3Pipeline()
   result3.output dir = 'kerphase realdata/NIRISS/comm run1 s3/' # output directory; if 'None', uses same directory as
    # Bad pixel fixing step.
   result3.fix bad pixels.skip = False # skip step?
   result3.fix bad pixels.plot = True # make and save plots?
   result3.fix bad pixels.bad bits = ['DO NOT USE'] # DQ flags to be considered as bad pixels (see https://jwst-reffil
   result3.fix bad pixels.method = 'medfilt' # method to fix bad pixels; 'medfilt' or 'KI'
   # Re-centering step.
   result3.recenter frames.skip = False # skip step?
   result3.recenter frames.plot = True # make and save plots?
   result3.recenter frames.method = 'FPNM' # XARA re-centering method; 'BCEN', 'COGI', or 'FPNM'
   result3.recenter frames.crop = True # crop NIRISS reference pixels
    result3.recenter frames.bmax = 4. # m; maximum baseline length for FPNM re-centering method
    result3.recenter frames.pupil path = '/Users/jkammerer/Documents/Code/xara/jwst/niriss clear pupil.fits' # path to
    # Windowing step.
   result3.window frames.skip = False # skip step?
   result3.window frames.plot = True # make and save plots?
   result3.window frames.wrad = 15 # pix; radius of super-Gaussian window mask; if 'None', makes automatic quess
   # Kernel-phase extraction step.
   result3.extract kerphase.skip = False # skip step?
   result3.extract kerphase.plot = True # make and save plots?
   result3.extract kerphase.bmax = None # m; maximum baseline length for kernel-phase extraction; if 'None', uses enti
   result3.extract kerphase.pupil path = '/Users/jkammerer/Documents/Code/xara/jwst/niriss clear pupil.fits' # path to
    # Empirical uncertainties step.
   result3.empirical uncertainties.skip = False # skip step?
   result3.empirical uncertainties.plot = True # make and save plots?
   result3.empirical uncertainties.get emp err = True # estimate uncertainties empirically from standard deviation over
    result3.empirical uncertainties.get emp cor = False # estimate correlations empirically from standard deviation over
    # Run pipeline.
    result3.run(file.replace('uncal', 'calints'))
```

KPI3Pipeline

- User interface similar to STScl pipelines
 - → create familiarity
- No parameter tweaking necessary
 - → plug & play
- 5 step process based on XARA
- Currently working with NIRISS
 & NIRCam (MIRI can be added)
 → versatility
- Need to provide pupil models for every instrument

$\underline{\hspace{1.5cm}}^{\hspace{1.5cm}}\mathbf{Ind}$	Opt?	Name	Type	Dimensions	Description
0	(N)	PRIMARY	Image	$N_{ m f} imes N_{\lambda} imes N_{ m pix} imes N_{ m pix}$	Telescope images
1	N	APERTURE	Table	$N_{\mathrm{sap}} \times 3$	Description of pupil model
	N	XXC	Column		Subaperture x-coordinate [m]
	N	YYC	Column		Subaperture y-coordinate [m]
	N	TRM	Column		Subaperture transmission (0 < $T \le 1$)
2	N	UV-PLANE	Table	$N_{ m uv} imes 3$	Fourier plane coverage of pupil model
	N	UUC	Column		Fourier u-coordinate [m]
	N	VVC	Column		Fourier v-coordinate [m]
	N	RED	Column		Redundancy of uv-position (integer)
3	N	KER-MAT	Image	$N_{ m ker} imes N_{ m uv}$	Matrix K mapping image Fourier phase onto kernel phase
4	N	BLM-MAT	Image	$N_{ m uv} imes N_{ m sap}$	Matrix \boldsymbol{A} mapping pupil plane phase onto image Fourier phase
5	N	KP-DATA	Image	$N_{ m f} imes N_{\lambda} imes N_{ m ker}$	Kernel phase data [rad]
6	N	KP-SIGM	Image	$N_{ m f} imes N_{\lambda} imes N_{ m ker}$	Kernel phase standard deviation [rad]
7	N	CWAVEL	Table	$N_{\lambda} imes 2$	Description of bandpass
	N	CWAVEL	Column		Central wavelength of bandpass [m]
	N	BWIDTH	Column		Best available estimate of effective half- power bandwidth [m]
8	N	DETPA	Image	$N_{ m f}$	Detector position angle E of N [deg]
9	N	CVIS-DATA	Image	$2 imes N_{ m f} imes N_{\lambda} imes N_{ m uv}$	Complex visibility data $(\dim 1 = \text{real part}, \dim 2 = \text{imag. part})$
> 9	Y	KA-DATA	Image	$N_{ m f} imes N_{\lambda} imes N_{ m ker}$	Kernel amplitude data
> 9	Y	KA-SIGM	Image	$N_{ m f} imes N_{\lambda} imes N_{ m ker}$	Kernel amplitude standard deviation
> 9	Y	CAL-MAT	Image	$(N_{\rm ker} - K_{\rm klip}) \times N_{\rm ker}$	Karhunen-Loève projection matrix P' as in K19
> 9	Y	KP-COV	Image	Flexible, up to $N_{ m f} imes N_{\lambda} imes N_{ m ker} imes N_{ m ker}$	Kernel phase covariance [rad ²]
> 9	Y	KA-COV	Image	Flexible, up to $N_{\rm f} \times N_{\lambda} \times N_{\rm ker} \times N_{\rm ker}$	Kernel amplitude covariance
> 9	Y	FULL-COV	Image	Flexible, up to $N_{ m f} imes N_{\lambda} imes 2N_{ m ker} imes 2N_{ m ker}$	Kernel phase [rad ²] and kernel amplitude covariance
> 9	Y	IMSHIFT	Table	$N_{ m f} imes 2$	Shift to recenter images
	Y	XSHIFT	Column		Shift along x-axis (1-axis in Python) [pix]
	Y	YSHIFT	Column		Shift along y-axis (0-axis in Python) [pix]
> 9	Y	WINMASK	Image	$N_{ m pix} imes N_{ m pix}$	Super-Gaussian windowing mask
Notes. $K19 = Kammerer et al. (2019).$					

KPFITS

- Based on FITS file format from XARA
- Supports gray apertures
- Easy access to kernel phase projection matrix for model fitting/image reconstruction purposes
- Supports IFS data
- Supports correlated errors

2. Model fitting

AMI KPI

2. Model fitting

Detection map

MCMC fit

Contrast curve

```
from fouriever import intercorr, uvfit
# NIRISS/AMI test data.
idir = '../data/ABDor/'
odir = '../data/ABDor cov/'
fitsfiles = ['ABDor_NIRISS_F480M.oifits']
# Load data.
data = intercorr.data(idir=idir,
                      fitsfiles=fitsfiles)
# Add covariance.
data.add_cpcov(odir=odir)
# Load data.
data = uvfit.data(idir=odir,
                  fitsfiles=fitsfiles)
# Compute chi-squared map.
fit = data.chi2map(model='bin', # fit unresolved companion
                   cov=True, # this data set has covariance
                   sep_range=(50., 500.), # use custom separation range
                   step_size=25., # use custom step size
                   smear=3, # use bandwidth smearing of 3
                   ofile='../figures/abdor_smear_cov') # save figures
# Run MCMC around best fit position.
fit = data.mcmc(fit=fit, # best fit from gridsearch
                temp=None, # use default temperature (reduced chi-squared of best fit)
                cov=True, # this data set has covariance
                smear=3, # use bandwidth smearing of 3
                ofile='../figures/abdor smear cov') # save figures
# Compute chi-squared map after subtracting best fit companion.
fit_sub = data.chi2map_sub(fit_sub=fit, # best fit from MCMC
                           model='bin', # fit unresolved companion
                           cov=True, # this data set has covariance
                           sep_range=(50., 500.), # use custom separation range
                           step_size=25., # use custom step size
                           smear=3, # use bandwidth smearing of 3
                           ofile='../figures/abdor_smear_cov_sub') # save figures
# Estimate detection limits.
data.detlim(sigma=3., # confidence level of detection limits
           fit_sub=fit, # best fit from MCMC
            cov=True, # this data set has covariance
            sep_range=(50., 500.), # use custom separation range
            step_size=25., # use custom step size
            smear=3, # use bandwidth smearing of 3
            ofile='../figures/abdor smear cov sub') # save figures
```

11 12

13

17

24

34

36

42

47

fouriever

- Error correlation model (Kammerer+ 2020)
- Karhunen-Loève calibration (Kammerer+ 2019)
- Bandwidth smearing (Gallenne+ 2015)
- MCMC companion parameters (Wallace+ 2020)
- Detection limits (Gallenne+ 2015)

3. Image reconstruction

AMI KPI

3. Image reconstruction

AMI KPI

Your input is needed!

*Conclusions

- Astronomers want easy-to-use tools that deliver scienceready products
- For this purpose, we developed KPI3Pipeline and fouriever
- JWST commissioning paper is on its way
- We are looking for collaborators/support
- Development of different tools that follow different approaches is benefit for our community, but we need common file exchange format OIFITS/KPFITS