

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

AMI Commissioning Analysis

Rachel Cooper + AMI/KPI workshop, July 25-27 2022

+ AMI COM team: D. Thatte, A. Sivaramakrishnan, T. Vandal, J. Kammerer, L. Albert, K. Volk, N. Cook, E. Artigau

Analysis Scripts Overview

- 0. AMI science readiness criterion
- 1. Observables comparable with analytical values and noisy simulations
- 2. Calibrator observables internally consistent
- 3. Calibrator observables comparable with expected point source values, noisy simulations
- 4. Data quality (DC levels, bad pixels) consistent, as expected
- 5. Measured positions of NRM sub-apertures are as expected
- 6. Comparison of the actual PSF location with commanded pixel location indicates successful TA
- 7. Dithers and sub-dithers match the commanded values.
- 8. Charge migration existence/characterization
- 9. PSF characterization
- 10. Kernel phase analysis

Driver script:

- Output organization: runs with different pipeline settings, observable extraction settings, bad pixel fixing routines, can be easily organized
- Step toggling: turn all pre-analysis and analysis steps on and off from one location

Observation dictionary:

- Allows filename-independent analysis scripts, easy selection of exposures based on observation configuration
- Prerequisite data validation with APT file

Command line interface:

• As well as being callable from other pipeline scripts, each step can also be called from the command line with various arguments

Pre-analysis

- Data validation
 - verify_1093_xml.py
 - check_niriss_headers.py
 - data_quicklook.py
- JWST calibration pipeline (Detector1, Image2)
 - run_ami_pipeline.py
- Kernel phase extraction (xara calwebb_kpi3)
 - run_kernel_stage3.py
- Bad pixel correction
 - run_bp_fix.py
- Observable extraction & calibration (ImPlaneIA or AMICAL)
 - run_implaneia_1.py
 - run_implaneia_2.py
 - run_amical.py

obs012 NRM F380M 2 160 pri1 sub0: jw01093012001_03104_00001_nis obs012 NRM F430M 4 82 pri1 sub0: jw01093012001 03103 00001 nis obs012_NRM_F480M_13_29_pri1_sub0: jw01093012001_03105_00001_nis obs012 NRM F480M 5 69 pri1 sub0: jw01093012001_03102_00001_nis obs012ta_NRM_F480M_7_1_pri1_sub0: jw01093012001_02101_00001_nis obs012ta NRM F480M 7 1 pri2 sub0: jw01093012001_02101_00002_nis obs012ta_NRM_F480M_7_1_pri3_sub0: jw01093012001_02101_00003_nis obs012ta NRM F480M 7 1 pri4 sub0: jw01093012001_02101_00004_nis obs013_NRM_F380M_2_160_pri1_sub0: jw01093013001_03104_00001_nis obs013_NRM_F430M_4_82_pri1_sub0: jw01093013001_03103_00001_nis obs013_NRM_F480M_13_29_pri1_sub0: jw01093013001_03105_00001_nis obs013_NRM_F480M_5_69_pri1_sub0: jw01093013001_03102_00001_nis obs013ta NRM F480M 7 1 pri1 sub0: jw01093013001_02101_00001_nis obs013ta_NRM_F480M_7_1_pri2_sub0: jw01093013001_02101_00002_nis obs013ta_NRM_F480M_7_1_pri3_sub0: jw01093013001_02101_00003_nis obs013ta NRM F480M 7 1 pri4 sub0: jw01093013001 02101 00004 nis obs014_NRM_F480M_5_69_pri1_sub1: jw01093014001_03102_00001_nis obs014 NRM F480M 5 69 pri1 sub2: jw01093014001_03102_00002_nis obs014 NRM F480M 5 69 pri1 sub3: jw01093014001 03102 00003 nis obs014 NRM F480M 5 69 pri1 sub4: jw01093014001_03102_00004_nis obs014 NRM F480M 5 69 pri1 sub5: jw01093014001 03102 00005 nis obs014ta_NRM_F480M_7_1_pri1_sub0: jw01093014001_02101_00001_nis obs014ta NRM F480M 7 1 pri2 sub0: jw01093014001_02101_00002_nis obs014ta_NRM_F480M_7_1_pri3_sub0: jw01093014001_02101_00003_nis obs014ta NRM F480M 7 1 pri4 sub0: jw01093014001_02101_00004_nis obs015_NRM_F380M_4_118_pri1_sub0: jw01093015001_03104_00001_nis obs015 NRM F430M 9 78 pri1 sub0: jw01093015001_03103_00001_nis obs015_NRM_F480M_12_61_pri1_sub0: jw01093015001_03102_00001_nis obs015ta_NRM_F480M_11_1_pri1_sub0: jw01093015001_02101_00001_nis obs015ta_NRM_F480M_11_1_pri2_sub0: jw01093015001_02101_00002_nis obs015ta_NRM_F480M_11_1_pri3_sub0: jw01093015001_02101_00003_nis obs015ta_NRM_F480M_11_1_pri4_sub0: jw01093015001_02101_00004_nis

prog1093.yml

Dictionary format:

obsnum_pupil_filter_ngroups_nints_primar
ydither_subdither : filename root

Pre-analysis

quicklook2_wbadpx.ipynb:

• Calibrate AB Dor and two reference stars at one detector position, one filter, and extract observables with ImPlaneIA.

quicklook2_wbadpx.ipynb:

• Examine observables, fit with binary model using CANDID

Quick way to get first results and familiarize yourself with software

Analysis 0: AMI Science Readiness

<u>Summary</u>: Run CANDID or Fouriever for MCMC modeling of binary parameters; check for 5σ agreement between predicted and measured binary parameters. Use Fouriever to do a multi-wavelength fit to all calibrated OIFITS files.

Input: Calibrated OIFITS files (AB Dor at two primary dither positions in filters F480M, F430M, F380M, calibrated by either HD 37093 or HD 36805)

- analysis0_fit.pkl: Pickled dictionary of all CANDID fit results
- **analysis0_fit_results.dat**: Human-readable table of binary parameters from each observation analysis0_fit_truefalse.dat: True/False table of whether retrieved binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected binary parameters are within the confidence interval of the expected bin the confidence
- **[oifits_name]_detection_map_candid.pdf**: Detection map showing the most probable position of the companion
- [oifits_name]_fit_candid.pdf: Plotted observables with the best-fit model observables
- [oifits_name]_lim_detection_candid.pdf: Detection limit map (injection method)
- all_abdor_smear_cov_chi2map.pdf: Chi-squared map of companion location from Fouriever multiple-filter binary fit
- all_abdor_smear_cov_mcmc_chains.pdf: Fouriever MCMC walks for each modeled binary parameter
- all_abdor_smear_cov_mcmc_corner.pdf: Fouriever corner plot of MCMC best-fit binary parameters
- all_abdor_smear_cov_t3_bin: Fouriever plot of data vs model closure phases
- all_abdor_smear_cov_sub_[*].pdf: Results of secondary Fouriever fit to data after best-fit companion subtracted

Calibrated OIFITS	Sep/mas	PA/deg	DM/mag	chi^2	nsigma
obs012_pri1_sub0_calib_obs015_pri1_sub0_F480M.oifits	328.179 +/- 7.90	279.908 +/- 1.30	4.440 +/- 0.11	0.06	8.03
obs013_pri1_sub0_calib_obs016_pri1_sub0_F480M.oifits	330.894 +/- 8.61	279.405 +/- 1.35	4.485 +/- 0.11	0.07	8.03
obs012_pri1_sub0_calib_obs015_pri1_sub0_F430M.oifits	326.811 +/- 8.51	280.100 +/- 1.42	4.415 +/- 0.12	0.09	8.03
obs013_pri1_sub0_calib_obs016_pri1_sub0_F430M.oifits	326.536 +/- 8.78	279.367 +/- 1.44	4.474 +/- 0.11	0.09	8.03
obs012_pri1_sub0_calib_obs015_pri1_sub0_F380M.oifits	322.812 +/- 10.15	279.600 +/- 1.78	4.415 +/- 0.15	0.09	8.03
obs013_pri1_sub0_calib_obs016_pri1_sub0_F380M.oifits	393.508 +/- 9.49	425.517 +/- 1.39	4.353 +/- 0.15	0.09	8.03
obs012_pri1_sub0_calib_obs018_pri1_sub0_F480M.oifits	328.198 +/- 7.78	280.238 +/- 1.28	4.507 +/- 0.11	0.06	8.03
obs013_pri1_sub0_calib_obs019_pri1_sub0_F480M.oifits	328.870 +/- 8.45	279.935 +/- 1.36	4.554 +/- 0.11	0.06	8.03
<pre>obs012_pri1_sub0_calib_obs018_pri1_sub0_F430M.oifits</pre>	328.412 +/- 10.59	280.015 +/- 1.73	4.512 +/- 0.14	0.12	8.03
obs013_pri1_sub0_calib_obs019_pri1_sub0_F430M.oifits	327.088 +/- 8.21	279.662 +/- 1.32	4.529 +/- 0.11	0.07	8.03
<pre>obs012_pri1_sub0_calib_obs018_pri1_sub0_F380M.oifits</pre>	324.216 +/- 8.93	279.656 +/- 1.57	4.438 +/- 0.14	0.07	8.03
obs013 pri1 sub0 calib obs019 pri1 sub0 F380M.oifits	328.393 +/- 9.95	280.448 +/- 1.73	4.417 +/- 0.15	0.09	8.03

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE **Analysis** 0: AMI Science Readiness

CANDID: companion search using cp, t3, v2 from NIRISS obs012_pri1_sub0_calib_obs015_pri1_sub0_F430M.oifits

CANDID: companion search using cp, t3, v2 from NIRISS obs013_pri1_sub0_calib_obs016_pri1_sub0_F380M.oifits

Analysis 0: AMI Science Readiness

https://github.com/kammerje/fouriever

STSCI SPACE TELESCOPE

Summary: Split each uncal file into 10 chunks of ints, process through pipeline, extract observables. Compare CPs, SqVs from each chunk to equivalent from simulations, analytical formulae. Check stdev of each CP across each of 10 chunks of ints <1e-1 rad, SqV stdev < 1e-1 for both target and calibrator files. Check that pupil phases (pistons) have a standard deviation < 50 nm.

Inputs: Uncal files for AB Dor and HD 37093, 2 dither positions, F480M only

- **jw01093...Nints_chunkM_[suffix]:** For each of 4 input files, 10 "faked" uncal, trapsfilled, rate/rateints, cal/calints, and oifits files. Original filename has Nints_chunkM appended, where N is the number of integrations in the file, M is the order in which they were taken from the original exposure (out of 10 chunks)
- [obs_key]_chunkM_observables_plot.png: Closure phases and squared visibilities from analytically calculated, noisy simulated, and in-flight (uncalibrated) exposures of AB Dor.
- [obs_key]_CPs.dat: Table of closure phase standard deviations from all 10 chunks produced from each exposure
- [obs_key]_SqVs.dat: Table of squared visibility standard deviations from all 10 chunks produced from each exposure
- **[obs_key]_pistons_plot.png**: Plot of the 7 pistons (pupil phases) from ImPlaneIA solution in degrees and nm OPD over the 10 chunks of integrations
- **piston_stdevs.png**: Plot of the piston standard deviations for each of the four exposures examined

obs012_NRM_F480M_5_69_pri1_sub0_chunk1

Hole Indices	Baseline [m]	CP STD #1	CP STD #2	CP STD #3	CP STD #4	CP STD #5	CP STD #6	CP STD #7	CP STD #8	CP STD #9	CP STD #10
1_2_3	4.759	0.8667	0.7395	0.7568	0.3735	0.4911	0.5321	0.5891	0.6646	0.9142	0.5427
1_2_4	4.573	0.4855	0.5710	0.4542	0.7261	0.7382	0.9260	0.5633	0.5687	0.5176	0.3474
1_2_5	4.759	0.7244	0.4535	0.8282	0.4234	0.7206	0.7582	0.4375	0.7048	0.7951	0.6686
1_2_6	4.759	0.8826	0.6156	0.3718	0.4881	0.8544	0.6927	0.8603	0.6472	0.3516	0.4724
1_2_7	4.759	0.5751	0.6317	0.6616	0.6794	0.6767	0.6155	0.6893	1.0759	0.6019	0.2399
1_3_4	5.280	0.2081	0.7608	0.5226	0.6401	0.5391	0.5747	0.8547	0.5995	0.6165	0.4365
1_3_5	4.759	0.5778	0.3148	0.8194	0.5104	0.6233	0.2392	0.5610	0.8653	0.4946	0.5804
1_3_6	4.573	0.7184	0.5724	0.3528	0.2390	0.4133	0.2690	0.2844	0.7127	0.4338	0.3504
1_3_7	4.759	0.6167	0.3014	0.3900	0.4058	0.7057	0.2332	0.4348	0.8613	0.5074	0.4699
1_4_5	4.759	0.2985	0.7537	0.8731	0.7012	0.4123	0.7640	0.6784	0.5617	0.7980	0.6454
1_4_6	4.573	0.6567	0.7737	0.9223	0.7791	0.3507	0.8041	0.8628	0.5718	0.6675	0.5190
1_4_7	4.759	0.5070	0.9144	0.6007	0.8668	0.7448	0.5021	0.9445	0.5494	0.7164	0.7154
1_5_6	4.759	0.4541	0.5247	0.7932	0.5650	0.6031	0.6624	0.5250	0.6756	0.5732	0.2979
1_5_7	4.759	0.7420	0.5690	0.6771	0.7657	0.9801	0.5122	0.5166	0.7982	0.1948	0.7170
1_6_7	4.759	0.6957	0.2804	0.3172	0.5877	0.8071	0.2642	0.5597	0.4924	0.6624	0.2504
2_3_4	5.280	0.6328	0.4530	0.6497	0.4804	0.4260	0.4429	0.4919	0.4408	0.8710	0.4525
2_3_5	4.759	0.6507	0.6458	0.9456	0.6798	0.6765	0.6847	0.6205	0.7950	0.5097	0.9959
2_3_6	4.759	0.4587	0.7594	0.7460	0.5704	0.4960	0.4905	0.5269	0.8573	0.8126	0.5178
2_3_7	4.759	0.7640	0.4983	0.5315	0.3616	0.3453	0.3581	0.3206	0.8454	0.8965	0.5791
2_4_5	2.286	0.3046	0.1912	0.6608	0.4605	0.6442	0.3259	0.3187	0.7579	0.6915	0.4336
2_4_6	4.759	0.7847	0.8734	0.7926	0.9810	0.8645	0.7745	0.4494	1.0203	0.5694	0.6454
2_4_7	3.960	0.3885	0.3485	0.5372	0.4997	0.4759	0.7393	0.5054	0.1827	0.3586	0.6082
2_5_6	4.759	0.7294	0.4449	0.7437	0.7996	0.4406	0.6973	0.6889	0.3635	0.4770	0.5942
2_5_7	3.960	0.6324	0.0996	0.3086	0.3585	0.3883	0.5685	0.4264	0.6197	0.4403	0.4637
2_6_7	4.759	0.6351	0.4212	0.6447	0.8219	0.6652	0.4975	0.4298	0.5098	0.2356	0.4599
3_4_5	5.280	0.3916	0.5355	0.3981	0.7752	0.7677	0.2974	0.8463	0.7915	0.5470	0.3025
3_4_6	5.280	0.4763	0.9502	0.6019	0.5620	0.6241	0.6362	0.8768	0.7557	0.6993	0.7376
3_4_7	5.280	0.3140	0.5833	0.2409	0.5291	0.4551	0.7865	0.3618	0.7797	0.7509	0.6341
3_5_6	4.759	0.5913	0.4554	0.4618	0.5430	0.8076	0.7357	0.6993	0.4388	0.6459	0.5141
3_5_7	4.759	0.6992	0.4573	0.5333	0.5516	0.7431	0.4147	0.5179	0.4632	0.6833	0.8880
3_6_7	3.492	0.7472	0.5468	0.3904	0.3789	0.3839	0.0883	0.7152	0.6450	0.4531	0.4710
4_5_6	4.573	0.7744	0.7343	0.6241	0.7487	0.4958	0.7911	0.7105	0.9276	0.5980	0.7030
4_5_7	3.492	0.2853	0.4829	0.6223	0.5928	0.7628	0.4000	0.5036	0.4984	0.5210	0.8056
4_6_7	4.573	0.8265	0.7168	0.4915	0.5968	0.5972	0.9777	0.7789	0.7921	0.5877	0.7497
5_6_7	3.492	0.5099	0.2534	0.7359	0.4559	0.6321	0.7322	0.5788	0.3403	0.5152	0.6233

Hole Indices	Baseline [m]	Sq Vis STD #1	Sq Vis STD #2	Sq Vis STD #3	Sq Vis STD #4	Sq Vis STD #5	Sq Vis STD #6	Sq Vis STD #7	Sq Vis STD #8	Sq Vis STD #9	Sq Vis STD #10
1 2	3.492	0.0160	0.0053	0.0055	0.0070	0.0109	0.0084	0.0130	0.0127	0.0065	0.0101
1 3	2.640	0.0094	0.0081	0.0162	0.0158	0.0076	0.0066	0.0091	0.0075	0.0074	0.0116
1_4	4.573	0.0054	0.0105	0.0042	0.0063	0.0046	0.0079	0.0068	0.0143	0.0101	0.0112
1_5	4.759	0.0097	0.0104	0.0083	0.0089	0.0069	0.0095	0.0113	0.0076	0.0134	0.0063
1_6	4.573	0.0094	0.0085	0.0110	0.0166	0.0056	0.0090	0.0114	0.0117	0.0102	0.0112
1_7	4.759	0.0060	0.0041	0.0057	0.0030	0.0067	0.0101	0.0132	0.0071	0.0043	0.0119
2_3	4.759	0.0084	0.0118	0.0088	0.0121	0.0071	0.0068	0.0072	0.0085	0.0110	0.0094
2_4	1.320	0.0069	0.0174	0.0086	0.0128	0.0076	0.0096	0.0111	0.0063	0.0099	0.0108
2_5	2.286	0.0052	0.0155	0.0032	0.0098	0.0112	0.0040	0.0116	0.0111	0.0133	0.0138
2_6	4.759	0.0079	0.0128	0.0102	0.0115	0.0108	0.0137	0.0051	0.0036	0.0093	0.0109
2_7	3.960	0.0065	0.0149	0.0047	0.0078	0.0064	0.0073	0.0094	0.0071	0.0126	0.0069
3_4	5.280	0.0057	0.0088	0.0076	0.0156	0.0096	0.0128	0.0090	0.0107	0.0089	0.0093
3_5	4.759	0.0078	0.0086	0.0076	0.0073	0.0050	0.0087	0.0146	0.0084	0.0062	0.0099
3_6	2.640	0.0087	0.0104	0.0089	0.0061	0.0077	0.0066	0.0069	0.0075	0.0117	0.0097
3_7	3.492	0.0097	0.0140	0.0078	0.0119	0.0075	0.0070	0.0093	0.0111	0.0075	0.0086
4_5	1.320	0.0089	0.0107	0.0161	0.0113	0.0105	0.0073	0.0156	0.0116	0.0073	0.0105
4_6	4.573	0.0077	0.0144	0.0149	0.0141	0.0119	0.0077	0.0141	0.0121	0.0104	0.0149
4_7	3.492	0.0101	0.0169	0.0091	0.0135	0.0068	0.0153	0.0062	0.0062	0.0090	0.0112
5_6	3.492	0.0107	0.0077	0.0091	0.0044	0.0094	0.0139	0.0072	0.0144	0.0133	0.0105
5_7	2.286	0.0116	0.0043	0.0119	0.0151	0.0090	0.0102	0.0065	0.0092	0.0107	0.0138
6_7	1.320	0.0113	0.0153	0.0125	0.0066	0.0090	0.0108	0.0071	0.0084	0.0118	0.0087

Sq Vis stdevs < 0.1?

Analysis 2: Calibrator observables internally consistent

<u>Summary</u>: "Calibrate" each HD37093 exposure by the corresponding HD36805 exposure, and vice versa. Calibrators' closure phases must differ from each other by less than ~3e-3 radians (standard deviations of CPs of one calibrator "calibrated" by the other), fringe amplitude standard deviations < 3e-2. Run CANDID on calibrated-by-calibrator pairs to produce detection limit plots.

Input: Multi-integration OIFITS files of two calibrators HD 37093 and 36805 at 2 dither positions, 3 filters

- [calibrator_str]_ca_diff.dat: Table of closure amplitude differences, sorted by baseline length
- [calibrator_str]_cp_diff.dat: Table of closure phase differences, sorted by max baseline length
- [calibrator_str]_visamp_ratio.dat: Table of visibility amplitude ratios, sorted by max baseline length
- [calibrator_str]_cp_va_plot.png: Plot of "calibrated" closure phases and visibility amplitudes vs baseline length
- [oifits_name]_lim_detection_candid.png: CANDID detection limit plot.
- [oifits_name]_detection_map_candid.pdf: Detection map showing the attempted binary fit
- [oifits_name]_fit_candid.pdf: Plotted observables with the attempted binary model observables

Analysis 2: Calibrator observables internally consistent

c1_f480m_pos1_c2_f480m_pos1

CPs close to 0, vis amps close to 1?

Analysis 2: Calibrator observables internally consistent

Hole Indices	Baseline [m]	Closure phase Cal1-Cal2
2_4_5	2.286	-0.035 +/- 6.64e-01
4_5_7	3.492	-0.120 +/- 7.77e-01
5_6_7	3.492	0.154 +/- 8.58e-01
3_6_7	3.492	-0.162 +/- 7.96e-01
2_4_7	3.960	-0.309 +/- 8.96e-01
2_5_7	3.960	0.038 +/- 8.73e-01
1_2_4	4.573	-0.122 +/- 8.24e-01
1_3_6	4.573	0.027 +/- 7.89e-01
1_4_6	4.573	0.088 +/- 9.62e-01
4_5_6	4.573	-0.179 +/- 8.23e-01
4_6_7	4.573	0.015 +/- 9.10e-01
1_2_7	4.759	0.084 +/- 9.02e-01
1_2_5	4.759	0.024 +/- 8.23e-01
1_3_7	4.759	-0.062 +/- 8.15e-01
1_4_5	4.759	-0.131 +/- 8.41e-01
1_4_7	4.759	0.097 +/- 8.87e-01
1_5_6	4.759	0.181 +/- 9.94e-01
1_5_7	4.759	0.111 +/- 8.94e-01
1_6_7	4.759	0.059 +/- 8.65e-01
1_3_5	4.759	0.052 +/- 8.34e-01
3_5_6	4.759	0.362 +/- 9.19e-01
3_5_7	4.759	0.279 +/- 9.02e-01
1_2_3	4.759	0.135 +/- 7.97e-01
2_3_5	4.759	0.253 +/- 8.46e-01
2_3_7	4.759	-0.126 +/- 9.58e-01
2_4_6	4.759	-0.148 +/- 9.80e-01
1_2_6	4.759	0.048 +/- 9.62e-01
2_3_6	4.759	0.226 +/- 8.25e-01
2_5_6	4.759	0.128 +/- 8.17e-01
2_6_7	4.759	-0.153 +/- 7.96e-01
1_3_4	5.280	-0.089 +/- 7.54e-01
2_3_4	5.280	0.139 +/- 9.99e-01
3_4_5	5.280	-0.109 +/- 7.66e-01
3_4_6	5.280	0.076 +/- 1.02e+00
3_4_7	5.280	0.094 +/- 8.84e-01

"calibrated" CPs stdevs < 3e-3 rad (0.17 deg), amplitude stdevs < 3e-2 ?

Hole Indices	Baseline [m]	Visbility amplitude Cal1/Cal2
2_4	1.320	0.999 +/- 8.08e-03
4_5	1.320	1.002 +/- 8.76e-03
6_7	1.320	1.001 +/- 7.75e-03
5_7	2.286	1.003 +/- 9.48e-03
2 5	2.286	1.000 +/- 7.85e-03
3_6	2.640	1.002 +/- 7.16e-03
1_3	2.640	1.003 +/- 7.76e-03
4_7	3.492	1.001 +/- 8.15e-03
5_6	3.492	1.000 +/- 7.64e-03
1_2	3.492	1.001 +/- 8.57e-03
3_7	3.492	1.001 +/- 8.36e-03
2_7	3.960	1.001 +/- 7.98e-03
1_4	4.573	1.003 +/- 9.90e-03
1_6	4.573	1.003 +/- 8.71e-03
4_6	4.573	1.006 +/- 9.84e-03
1_7	4.759	1.002 +/- 8.63e-03
1_5	4.759	1.001 +/- 9.23e-03
3_5	4.759	1.000 +/- 8.99e-03
2_3	4.759	1.004 +/- 8.21e-03
2_6	4.759	1.001 +/- 8.34e-03
3_4	5.280	1.001 +/- 9.00e-03

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

Analysis 3: Calibrator observables close to expected values, simulations

<u>Summary</u>: Check if 0 is within 3 sigma confidence interval for closure phases; check if linear-fit squared visibilities within 3 sigma for squared visibilities. For each exposure generate plots of observables and save tables of observables sorted by baseline length.

Input: Raw calibrator oifits files (2 targets, 2 dithers, 3 filters)

- [obs_key]_cps.dat: Table of closure phases sorted by max baseline length, including True/False column to check if within 3 sigma of 0.
- [obs_key]_sqvis.dat: Table of squared visibilities sorted by baseline length, including True/False column to check if within 3 sigma of 0.
- [obs_key]_observables_plot.png: Plot of closure phases and squared visibilities vs baseline length

Analysis 3: Calibrator observables close to expected values, simulations

Analysis 3: Calibrator observables close to expected values, simulations

Hole Indices	Baseline [m]	Closure phase	0 within 3 sigma?
2_4_5	2.286	0.143 +/- 0.46	True
4_5_7	3.492	-0.346 +/- 0.59	True
5_6_7	3.492	-0.121 +/- 0.64	True
3_6_7	3.492	0.187 +/- 0.60	True
2_4_7	3.960	0.031 +/- 0.66	True
2_5_7	3.960	-0.210 +/- 0.70	True
1_2_4	4.573	-0.607 +/- 0.61	True
1_3_6	4.573	0.287 +/- 0.61	True
1_4_6	4.573	-0.218 +/- 0.70	True
4_5_6	4.573	-0.231 +/- 0.62	True
4_6_7	4.573	-0.370 +/- 0.68	True
1_2_7	4.759	-0.267 +/- 0.72	True
1_2_5	4.759	-0.811 + / - 0.55	True
1_3_7	4.759	0.396 +/- 0.64	True
1_4_5	4.759	-0.192 + / - 0.64	True
1_4_7	4.759	0.562 +/- 0.70	True
1_5_6	4.759	-0.134 + / - 0.74	True
1_5_7	4.759	0.477 +/- 0.57	True
1_6_7	4.759	0.481 + - 0.61	True
1_3_5	4.759	0.131 + - 0.59	True
3_5_6	4.759	-0.250 + - 0.61	True
3_5_7	4.759	0.177 +/- 0.72	True
1_2_3	4./59	-0.603 +/- 0.54	Irue
2_3_5	4./59	0.336 +/- 0.56	Irue
2_3_/	4./59	-0.063 +/- 0.//	Irue
2_4_6	4./59		Irue
1_2_6	4./59		True
2_3_6	4./59	0.2/9 + - 0.60	I rue True
2_5_0	4.759		True
2_0_/	4./59		True
1_3_4	5.280	0.021 + - 0.59	True
2_3_4	5.280		True
5_4_5 2 / 6	5 200	-0.244 + 7 - 0.39	True
3_4_0 3_1_7	5 200		True
3_4_/	5.280	0.093 + 7 - 0.08	True

CPs within 3 sigma of 0? SqVs within 3 sigma of simulations?

Hole Indices	Baseline [m]	Squared visibility	Within 3 sigma of simulations?
2_4	1.320	0.941 +/- 0.01	False
4_5	1.320	0.931 +/- 0.01	False
6_7	1.320	0.930 +/- 0.01	False
5_7	2.286	0.856 +/- 0.01	False
2_5	2.286	0.868 +/- 0.01	False
3_6	2.640	0.815 +/- 0.01	False
1_3	2.640	0.797 +/- 0.01	False
4_7	3.492	0.693 +/- 0.01	False
5_6	3.492	0.701 +/- 0.01	False
1_2	3.492	0.691 +/- 0.01	False
3_7	3.492	0.697 +/- 0.01	False
2_7	3.960	0.644 +/- 0.01	False
1_4	4.573	0.556 +/- 0.01	False
1_6	4.573	0.574 +/- 0.01	False
4_6	4.573	0.550 +/- 0.01	False
1_5	4.759	0.543 +/- 0.01	False
1_7	4.759	0.544 +/- 0.01	False
3_5	4.759	0.529 +/- 0.01	False
2_3	4.759	0.529 +/- 0.01	False
2_6	4.759	0.536 +/- 0.01	False
3_4	5.280	0.472 +/- 0.01	False

<u>Summary</u>: Summarize bad pixel types and quantities in each exposure. Save mediandifference GIFs of each exposure. Compare DC levels measured by ImPlaneIA (uniform background) to noisy MIRAGE simulations DC levels, and compare pipelinecalibrated data uniform background measured in a corner of the subarray to those from simulations.

Input: All pipeline-calibrated (calints) files and oifits files

- [obs_key]_bptypes.txt: Text summary of pipeline-flagged bad pixels in each exposure
- [obs_key]_DQ_dnu.gif: GIF of pixels flagged DO_NOT_USE in each integration of an exposure
- [obs_key]_median_diff.gif: GIF of difference from the median of a "chunk" of ints for each integration of an exposure
- [obs_key]_sim_vs_obs_bkgd.png: Plot of uniform background measured from cutout of each exposure, observed vs. simulated
- DCplot.png: Mean DC level from ImPlaneIA in each exposure from observed vs simulated data.

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

160

Analysis 5: NRM sub-aperture positions

<u>Summary</u>: Check that the measured FT splodge positions are consistent with AMICAL's predicted values for a given filter's central wavelength. Measure the u and v offsets for each splodge, parametrize the overall differences with a 2d model for affine transformations (2x2 matrix, dx and dy)

Input: All AMI calints files

- off_vs_dist_[calints].pdf: plots of measured subaperture offset vs distance
- off_vs_angle_[calints].pdf: plots of measured subaperture offset vs. angle
- uv_diff_[calints].pdf: plots of measured-expected subaperture position in uv plane
- uv_diff_recon_[calints].pdf: plots of measured-expected subaperture position in uv plane, after measured affine transform applied
- uv_output.csv: U-V pixel coordinates (measured and model), U-V pixel coordinates after best-fit affine transform correction, and U-V differences between expected and fitted positions. This can be loaded with pandas to have a 3-level hierarchical index dataframe (per file, frame, and baseline)
- params.csv: Parameters of the affine 2D model. Can be loaded with pandas in a 2-level hierarchical index (per file and per frame).

Analysis 5: NRM sub-aperture positions

Analysis 5: NRM sub-aperture positions

ELESCOPE

Analysis 6: PSF primary dither location check

<u>Summary</u>: For each primary dithered NRM observation, use the Anderson & King method to locate the PSF sub-pixel location and calculate offset from the commanded position.

Input: Calints files of primary dithers (calibrator stars)

- [obs_key]_offset_per_int.png: scalar offset from commanded position for each integration of an exposure
- [obs_key_xy_offset.png: Scatter plot of measured offsets in X and Y from commanded position. Offsets are "quantized" by 1/oversampling step used
- all_offsets.png: All X and Y offsets from all exposures displayed in plot

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE <u>Summary</u>: Fits for the sub-pixel centroid position of each frame and averages over frame to get a plot of how the dithers differ from their expected position. Uncorrected bad pixels are masked when performing the fit.

Input: Two 5-pt, one 25-pt set of subpixel dither pattern calints files

- analysis7_diffs.pdf: scatter plot x vs y absolute for all integrations (along with averaged and expected position)
- analysis7_positions: Difference between expected and measured (average) dither positions
- "stats" files: measured_dither_position.csv and measured_dither_position.fits
- report.txt: summary of all results, agreement between measured and expected positions

X and Y centroid position for each integration and averaged per exposure (Fourier shift method)

Difference between measured and expected position for each dither

Analysis 8: charge migration existence

<u>Summary</u>: Divide each integration of 30k e- limit data into 2 chunks of groups to produce "fake" uncal files containing the first and second halves of ramps. Run through JWST pipeline to produce 2d cal files. Plot change in count rate in brightest pixel vs surrounding ring of 8 pixels. Repeat with 72k e- limit data and 4 chunks of groups.

<u>Input</u>: AB Dor uncal files with signal limits of 30k e- and 72k e- (2 dither positions, F480M)

- [original_fn]_Xgroups_chunkY_Z_[suffix].fits: FITS files with suffixes rate, rateints, trapsfilled, cal, calints. Xgroups is the number of groups in the new "faked" files, chunkY_Z indicates the chunk number out of the total number of chunks of groups.
- [N]_counts_[M]_chunks_countrate_diff.png: Plot of percent difference in count rate between group-chunks. N is the signal limit for the observations (either 30k or 72k here), M is the number of chunks of groups the original exposure was divided into.
- [N]_counts_[M]_chunks_countrate_groups.png: Plot of sum of counts in peak pixel and in surrounding ring for each chunk. Each are plotted with both a linear and quadratic least-squares fit.

Analysis 8: charge migration existence

<u>Summary:</u> Calculate the sharpness, where sharpness is the squared sum of the intensities divided by the sum of the squared intensities, and central pixel fraction of each point source observation by filter. Each integration is treated as a separate psf. Calculate the same quantities for WebbPSF models and compare distributions of sharpness and CPF to model values.

Input: All calibrator star calints files

- [obs_key]_CPF_cutouts.png: Postage stamp cutouts used to calculate central pixel fraction (one stamp per integration)
- [obs_key]_sharpness_cutouts.png: Postage stamp cutouts used to calculate sharpness (one stamp per integration)
- CPF_hist_[filter].png: Histogram of central pixel fraction measurements for each filter, with WebbPSF value indicated
- sharpness_hist_[filter].png: Histogram of sharpness measurements for each filter, with WebbPSF value indicated

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

obs016_NRM_F480M_12_61_pri1_sub0

obs016_NRM_F480M_12_61_pri1_sub0

<u>Summary</u>: Inspect the raw kernel phase outputs from the 4 point sources observed with CLEARP, calibrate the kernel phases, evaluate detection limits, and evaluate pupil model quality.

Input: Raw kernel phase "kpfits" files

- calibrated kernel phases
- PDF plots of the following for each raw file:
 - Kernel phase vs index for all files (to show kernel phase scatter)
 - Fourier amplitude vs baseline redundancy (to evaluate pupil models)
 - Raw kernel detection limit curve for each object
 - Calibrated kernel phase detection limits for each object (using the other 3 targets as calibrators)

Xara calwebb_ami3 pipeline

Thomas Vandal

Analysis 10: Kernel phase analysis

Thomas Vandal

Analysis 10: Kernel phase analysis

Jens Kammerer

AMI vs KPI

Thomas Vandal

Pipeline comparison

ImPlaneIA vs. AMICAL observables:

Thomas Vandal

Pipeline comparison

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE **TA** accuracy

+ centroid_2dg + commanded (32,32)

+ Anderson & King

Further analysis

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE Detection limits (3-o)

We've barely scratched the surface of what can be done with these data!

- Two data sets separated by a couple weeks (epoch 1 not ideal in terms of target placement). Extra detector positions!
- Other AMI commissioning data: full frame AMI (NIS-010, NIS-020)
- Further pipeline comparisons: SAMpip, other observable extraction codes?
- Improved calibration how can we push detection limits?
- More useful data visualizations

Box link for data:

<u>https://stsci.app.box.com/folder/167501282178?s=aa398j2grz5if65dbw3baeihx8lgqt5l</u>

Github repositories:

- Commissioning scripts: <u>https://github.com/anand0xff/niriss-commissioning</u>
- ImPlaneIA: https://github.com/anand0xff/ImPlaneIA
- AMICAL: https://github.com/SydneyAstrophotonicInstrumentationLab/AMICAL
- JWST Pipeline: <u>https://github.com/spacetelescope/jwst</u>

Averaged OIFITS files & multi-integration OIFITS files saved from ImPlaneIA

1 fits.info(indir+'Saveoif/jw01093012001_03102_00001_nis.oifits')

Filename: /ifs/jwst/wit/niriss/rcooper/nis_019/comout2/pipeline_calibrated_bpcorr/Saveoif/jw01093012001_03102_00001_n
is.oifits

No.	Name	Ver	Туре	Cards	Dimensions	s Format														
0	PRIMARY	1	PrimaryHDU	18	()															
1	OI_WAVELENG	ГН	1 BinTableH	DU	17 1R x 20	[1E, 1E]														
2	OI_TARGET	1	BinTableHDU	56	1R x 17C	[1I, 16A,	1D,	1D,	1E,	1D,	1D,	1D,	8A,	8A,	1D,	1D,	1D,	1D,	1E,	1
E, 1	6A]																			
3	OI_ARRAY	1	BinTableHDU	37	7R x 8C	[16A, 16A,	1I,	1E,	3D,	1D,	6A,	2D]								
4	oi_vis	1	BinTableHDU	44	21R x 12C	[1I, 1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	21,	1L]				
5	OI_VIS2	1	BinTableHDU	38	21R x 10C	[1I, 1D,	1D,	1D,	1D,	1D,	1D,	1D,	21,	1L]						
6	OI_T3	1	BinTableHDU	50	35R x 14C	[1I, 1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	1D,	3I,	1L]		

1 fits.info(indir+'Saveoif/multi_jw01093012001_03102_00001_nis.oifits')

Filename: /ifs/jwst/wit/niriss/rcooper/nis_019/comout2/pipeline_calibrated_bpcorr/Saveoif/multi_jw01093012001_03102_0 0001_nis.oifits

No.	Name	Ver	Туре	Cards	Dimensions	s Format											
0	PRIMARY	1	PrimaryHDU	18	()												
1	OI_WAVELENG	TH	1 BinTableH	HDU	17 1R x 20	C [1E, 1E]										
2	OI_TARGET	1	BinTableHDU	56	1R x 17C	[1I, 16A,	1D, 11), 1E,	1D, 11	D, 1D,	8A,	8A, 1D,	1D,	1D,	1D,	1E,	1
Е,	16A]																
3	OI_ARRAY	1	BinTableHDU	37	7R x 8C	[16A, 16A,	1I, 1E	E, 3D,	1D, 62	A, 2D]							
4	OI_VIS	1	BinTableHDU	44	21R x 12C	[1I, 1D,	10, 11	D, 69D	, 69D,	69D,	69D,	1Q, 1D,	21,	1L]			
5	OI_VIS2	1	BinTableHDU	38	21R x 10C	[1I, 1D,(1D, 11	, 69D	, 69D,	1D, 1	D, 2I	, <u>ì</u> L]					
6	OI_T3	1	BinTableHDU	50	35R x 14C	[1I, 1D,	10, 11	D, 69D	, 69D,	69D,	69D,	1D, 1D,	1D,	1D,	3I,	1L]	
												-					

STSCI | SPACE TELESCOPE SCIENCE INSTITUT